File size: 9,822 Bytes
029cd9d
c9fd403
45c21ee
 
 
 
 
 
 
 
 
 
029cd9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3d7aa5
029cd9d
 
 
 
 
8f32193
 
029cd9d
 
 
8f32193
 
 
029cd9d
 
1f6f361
 
 
029cd9d
 
 
 
 
1f6f361
029cd9d
 
 
 
 
 
 
 
 
 
45c21ee
01b2956
ed11afa
029cd9d
 
 
 
 
 
 
 
 
 
 
 
45c21ee
 
 
 
 
029cd9d
 
 
 
6497822
029cd9d
 
 
 
 
 
8d22416
029cd9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45c21ee
 
 
 
 
 
 
 
 
 
 
029cd9d
45c21ee
 
 
 
029cd9d
 
45c21ee
 
 
 
029cd9d
45c21ee
 
029cd9d
 
 
 
45c21ee
029cd9d
 
 
 
 
45c21ee
 
029cd9d
 
45c21ee
 
 
029cd9d
45c21ee
029cd9d
 
45c21ee
 
029cd9d
 
45c21ee
 
 
 
 
029cd9d
 
 
 
45c21ee
 
 
016bf4c
45c21ee
 
2795841
029cd9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcd4fc3
029cd9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd2c7b2
029cd9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd2c7b2
029cd9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddab8a4
029cd9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bf0b84
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
#!/usr/bin/env python
#Patch0.1x
import os
import random
import uuid
import json

import gradio as gr
import numpy as np
from PIL import Image
import spaces
import torch
from diffusers import DiffusionPipeline
from typing import Tuple

#Check for the Model Base..//
bad_words = json.loads(os.getenv('BAD_WORDS', "[]"))
bad_words_negative = json.loads(os.getenv('BAD_WORDS_NEGATIVE', "[]"))
default_negative = os.getenv("default_negative","")

def check_text(prompt, negative=""):
    for i in bad_words:
        if i in prompt:
            return True
    for i in bad_words_negative:
        if i in negative:
            return True
    return False
#End of the - Prompt Con


style_list = [

    {
        "name": "3840 x 2160",
        "prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "2560 x 1440",
        "prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "3D Model",
        "prompt": "professional 3d model {prompt}. octane render, highly detailed, volumetric, dramatic lighting",
        "negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
    },
]

styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "3840 x 2160"

def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
    p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
    if not negative:
        negative = ""
    return p.replace("{prompt}", positive), n + negative



    

DESCRIPTION = """## MidJourney 3D

"""





if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>⚠️Running on CPU, This may not work on CPU.</p>"

MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

NUM_IMAGES_PER_PROMPT = 1

if torch.cuda.is_available():
    pipe = DiffusionPipeline.from_pretrained(
        "yodayo-ai/kivotos-xl-2.0",
        torch_dtype=torch.float16,
        use_safetensors=True,
        add_watermarker=False,
        variant="fp16"
    )
    pipe2 = DiffusionPipeline.from_pretrained(
        "Yntec/3Danimation",
        torch_dtype=torch.float16,
        use_safetensors=True,
        add_watermarker=False,
        variant="fp16"
    )
    if ENABLE_CPU_OFFLOAD:
        pipe.enable_model_cpu_offload()
        pipe2.enable_model_cpu_offload()
    else:
        pipe.to(device)    
        pipe2.to(device)    
        print("Loaded on Device!")
    
    if USE_TORCH_COMPILE:
        pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
        pipe2.unet = torch.compile(pipe2.unet, mode="reduce-overhead", fullgraph=True)
        print("Model Compiled!")

def save_image(img):
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

@spaces.GPU(enable_queue=True)
def generate(
    prompt: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    style: str = DEFAULT_STYLE_NAME,
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    guidance_scale: float = 3,
    randomize_seed: bool = False,
    use_resolution_binning: bool = True,
    progress=gr.Progress(track_tqdm=True),
):
    if check_text(prompt, negative_prompt):
        raise ValueError("Prompt contains restricted words.")
    
    prompt, negative_prompt = apply_style(style, prompt, negative_prompt)
    seed = int(randomize_seed_fn(seed, randomize_seed))
    generator = torch.Generator().manual_seed(seed)

    if not use_negative_prompt:
        negative_prompt = ""  # type: ignore
    negative_prompt += default_negative    

    options = {
        "prompt": prompt,
        "negative_prompt": negative_prompt,
        "width": width,
        "height": height,
        "guidance_scale": guidance_scale,
        "num_inference_steps": 25,
        "generator": generator,
        "num_images_per_prompt": NUM_IMAGES_PER_PROMPT,
        "use_resolution_binning": use_resolution_binning,
        "output_type": "pil",
    }
    
    images = pipe(**options).images + pipe2(**options).images

    image_paths = [save_image(img) for img in images]
    return image_paths, seed

examples = [
    "A closeup of a cat, a window, in a rustic cabin, close up, with a shallow depth of field, with a vintage film grain, in the style of Annie Leibovitz and in the style of Wes Anderson. --ar 85:128 --v 6.0 --style raw",
    "Daria Morgendorffer the main character of the animated series Daria, serious expression, very excites sultry look, so hot girl, beautiful charismatic girl, so hot shot, a woman wearing eye glasses, gorgeous figure, interesting shapes, life-size figures",
    "Dark green large leaves of anthurium, close up, photography, aerial view, in the style of unsplash, hasselblad h6d400c  --ar 85:128 --v 6.0 --style raw",
    "Closeup of blonde woman depth of field, bokeh, shallow focus, minimalism, fujifilm xh2s with Canon EF lens, cinematic --ar 85:128 --v 6.0 --style raw"
]

css = '''
.gradio-container{max-width: 580px !important}
h1{text-align:center}
'''
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(
        value="Duplicate Space for private use",
        elem_id="duplicate-button",
        visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
    )
    with gr.Group():
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run")
        result = gr.Gallery(label="Result", columns=1, preview=True)
    with gr.Accordion("Advanced options", open=False):
        use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True, visible=True)
        negative_prompt = gr.Text(
            label="Negative prompt",
            max_lines=1,
            placeholder="Enter a negative prompt",
            value="deformed iris, deformed pupils, semi-realistic, text, close up, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck",
            visible=True,
        )
        with gr.Row():
            num_inference_steps = gr.Slider(
                label="Steps",
                minimum=10,
                maximum=60,
                step=1,
                value=30,
            )
        with gr.Row():
            num_images_per_prompt = gr.Slider(
                label="Images",
                minimum=1,
                maximum=5,
                step=1,
                value=2,
            )
        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=0,
            visible=True
        )
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        with gr.Row(visible=True):
            width = gr.Slider(
                label="Width",
                minimum=512,
                maximum=2048,
                step=8,
                value=1024,
            )
            height = gr.Slider(
                label="Height",
                minimum=512,
                maximum=2048,
                step=8,
                value=1024,
            )
        with gr.Row():
            guidance_scale = gr.Slider(
                label="Guidance Scale",
                minimum=0.1,
                maximum=20.0,
                step=0.1,
                value=6,
            )
    with gr.Row(visible=True):
        style_selection = gr.Radio(
            show_label=True,
            container=True,
            interactive=True,
            choices=STYLE_NAMES,
            value=DEFAULT_STYLE_NAME,
            label="Image Style",
        )
    gr.Examples(
        examples=examples,
        inputs=prompt,
        outputs=[result, seed],
        fn=generate,
        cache_examples=CACHE_EXAMPLES,
    )

    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
        api_name=False,
    )

    gr.on(
        triggers=[
            prompt.submit,
            negative_prompt.submit,
            run_button.click,
        ],
        fn=generate,
        inputs=[
            prompt,
            negative_prompt,
            use_negative_prompt,
            style_selection,
            seed,
            width,
            height,
            guidance_scale,
            randomize_seed,
        ],
        outputs=[result, seed],
        api_name="run",
    )

if __name__ == "__main__":
    demo.queue(max_size=20).launch()