|
import os |
|
import random |
|
import uuid |
|
import json |
|
import gradio as gr |
|
import numpy as np |
|
from PIL import Image |
|
import spaces |
|
import torch |
|
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler |
|
|
|
css = ''' |
|
.gradio-container{max-width: 888px !important} |
|
h1{text-align:center} |
|
footer { |
|
visibility: hidden |
|
} |
|
.submit-btn { |
|
background-color: #6263c7 !important; |
|
color: white !important; |
|
} |
|
.submit-btn:hover { |
|
background-color: #6063ff !important; |
|
} |
|
''' |
|
|
|
examples = [ |
|
|
|
"A tiny astronaut hatching from an egg on the moon, 4k, planet theme", |
|
"An anime-style illustration of a delicious, golden-brown wiener schnitzel on a plate, served with fresh lemon slices, parsley --style raw5", |
|
"3d image, cute girl, in the style of Pixar --ar 1:2 --stylize 750, 4K resolution highlights, Sharp focus, octane render, ray tracing, Ultra-High-Definition, 8k, UHD, HDR, (Masterpiece:1.5), (best quality:1.5)", |
|
"Cold coffee in a cup bokeh --ar 85:128 --v 6.0 --style raw5, 4K" |
|
] |
|
|
|
MODEL_ID = os.getenv("MODEL_VAL_PATH") |
|
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096")) |
|
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1" |
|
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" |
|
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) |
|
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
pipe = StableDiffusionXLPipeline.from_pretrained( |
|
MODEL_ID, |
|
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, |
|
use_safetensors=True, |
|
add_watermarker=False, |
|
).to(device) |
|
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) |
|
|
|
if USE_TORCH_COMPILE: |
|
pipe.compile() |
|
|
|
if ENABLE_CPU_OFFLOAD: |
|
pipe.enable_model_cpu_offload() |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
|
def save_image(img): |
|
unique_name = str(uuid.uuid4()) + ".png" |
|
img.save(unique_name) |
|
return unique_name |
|
|
|
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
return seed |
|
|
|
@spaces.GPU(duration=60, enable_queue=True) |
|
def generate( |
|
prompt: str, |
|
negative_prompt: str = "", |
|
use_negative_prompt: bool = False, |
|
seed: int = 1, |
|
width: int = 1024, |
|
height: int = 1024, |
|
guidance_scale: float = 3, |
|
num_inference_steps: int = 25, |
|
randomize_seed: bool = False, |
|
use_resolution_binning: bool = True, |
|
num_images: int = 1, |
|
progress=gr.Progress(track_tqdm=True), |
|
): |
|
seed = int(randomize_seed_fn(seed, randomize_seed)) |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
|
options = { |
|
"prompt": [prompt] * num_images, |
|
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None, |
|
"width": width, |
|
"height": height, |
|
"guidance_scale": guidance_scale, |
|
"num_inference_steps": num_inference_steps, |
|
"generator": generator, |
|
"output_type": "pil", |
|
} |
|
|
|
if use_resolution_binning: |
|
options["use_resolution_binning"] = True |
|
|
|
images = [] |
|
for i in range(0, num_images, BATCH_SIZE): |
|
batch_options = options.copy() |
|
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE] |
|
if "negative_prompt" in batch_options: |
|
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE] |
|
images.extend(pipe(**batch_options).images) |
|
|
|
image_paths = [save_image(img) for img in images] |
|
return image_paths, seed |
|
|
|
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo: |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
) |
|
run_button = gr.Button( |
|
"Generate as ( 1024 x 1024 )π€", |
|
scale=0, |
|
elem_classes="submit-btn" |
|
) |
|
|
|
with gr.Accordion("Advanced options", open=True): |
|
num_images = gr.Slider( |
|
label="Number of Images", |
|
minimum=1, |
|
maximum=4, |
|
step=1, |
|
value=1, |
|
) |
|
with gr.Row(): |
|
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True) |
|
negative_prompt = gr.Text( |
|
label="Negative prompt", |
|
max_lines=5, |
|
lines=4, |
|
placeholder="Enter a negative prompt", |
|
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation", |
|
visible=True, |
|
) |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
with gr.Row(visible=True): |
|
width = gr.Slider( |
|
label="Width", |
|
minimum=512, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=64, |
|
value=1024, |
|
) |
|
height = gr.Slider( |
|
label="Height", |
|
minimum=512, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=64, |
|
value=1024, |
|
) |
|
with gr.Row(): |
|
guidance_scale = gr.Slider( |
|
label="Guidance Scale", |
|
minimum=0.1, |
|
maximum=6, |
|
step=0.1, |
|
value=2.0, |
|
) |
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=1, |
|
maximum=25, |
|
step=1, |
|
value=23, |
|
) |
|
|
|
with gr.Column(scale=2): |
|
result = gr.Gallery(label="Result", columns=1, show_label=False) |
|
|
|
gr.Examples( |
|
examples=examples, |
|
inputs=prompt, |
|
cache_examples=False |
|
) |
|
use_negative_prompt.change( |
|
fn=lambda x: gr.update(visible=x), |
|
inputs=use_negative_prompt, |
|
outputs=negative_prompt, |
|
api_name=False, |
|
) |
|
gr.on( |
|
triggers=[ |
|
prompt.submit, |
|
negative_prompt.submit, |
|
run_button.click, |
|
], |
|
fn=generate, |
|
inputs=[ |
|
prompt, |
|
negative_prompt, |
|
use_negative_prompt, |
|
seed, |
|
width, |
|
height, |
|
guidance_scale, |
|
num_inference_steps, |
|
randomize_seed, |
|
num_images |
|
], |
|
outputs=[result, seed], |
|
api_name="run", |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=40).launch() |