Spaces:
Running
on
Zero
Running
on
Zero
prithivMLmods
commited on
Commit
•
c6dec8d
1
Parent(s):
26549d1
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import random
|
3 |
import uuid
|
@@ -9,36 +19,43 @@ import spaces
|
|
9 |
import torch
|
10 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
css = '''
|
13 |
-
.gradio-container{max-width:
|
14 |
h1{text-align:center}
|
15 |
footer {
|
16 |
visibility: hidden
|
17 |
}
|
18 |
-
.submit-btn {
|
19 |
-
background-color: #6263c7 !important;
|
20 |
-
color: white !important;
|
21 |
-
}
|
22 |
-
.submit-btn:hover {
|
23 |
-
background-color: #6063ff !important;
|
24 |
-
}
|
25 |
'''
|
26 |
|
27 |
examples = [
|
28 |
-
|
29 |
-
"A tiny astronaut hatching from an egg on the moon, 4k, planet theme",
|
30 |
-
"An anime-style illustration of a delicious, golden-brown wiener schnitzel on a plate, served with fresh lemon slices, parsley --style raw5",
|
31 |
"3d image, cute girl, in the style of Pixar --ar 1:2 --stylize 750, 4K resolution highlights, Sharp focus, octane render, ray tracing, Ultra-High-Definition, 8k, UHD, HDR, (Masterpiece:1.5), (best quality:1.5)",
|
32 |
"Cold coffee in a cup bokeh --ar 85:128 --v 6.0 --style raw5, 4K",
|
33 |
-
"
|
|
|
|
|
|
|
34 |
]
|
35 |
|
36 |
-
|
|
|
37 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
38 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
39 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
40 |
-
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))
|
41 |
|
|
|
42 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
43 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
44 |
MODEL_ID,
|
@@ -48,9 +65,11 @@ pipe = StableDiffusionXLPipeline.from_pretrained(
|
|
48 |
).to(device)
|
49 |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
50 |
|
|
|
51 |
if USE_TORCH_COMPILE:
|
52 |
pipe.compile()
|
53 |
|
|
|
54 |
if ENABLE_CPU_OFFLOAD:
|
55 |
pipe.enable_model_cpu_offload()
|
56 |
|
@@ -84,6 +103,7 @@ def generate(
|
|
84 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
85 |
generator = torch.Generator(device=device).manual_seed(seed)
|
86 |
|
|
|
87 |
options = {
|
88 |
"prompt": [prompt] * num_images,
|
89 |
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
|
@@ -98,6 +118,7 @@ def generate(
|
|
98 |
if use_resolution_binning:
|
99 |
options["use_resolution_binning"] = True
|
100 |
|
|
|
101 |
images = []
|
102 |
for i in range(0, num_images, BATCH_SIZE):
|
103 |
batch_options = options.copy()
|
@@ -110,8 +131,9 @@ def generate(
|
|
110 |
return image_paths, seed
|
111 |
|
112 |
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
113 |
-
|
114 |
-
|
|
|
115 |
prompt = gr.Text(
|
116 |
label="Prompt",
|
117 |
show_label=False,
|
@@ -119,13 +141,9 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
119 |
placeholder="Enter your prompt",
|
120 |
container=False,
|
121 |
)
|
122 |
-
run_button = gr.Button(
|
123 |
-
|
124 |
-
|
125 |
-
elem_classes="submit-btn"
|
126 |
-
)
|
127 |
-
|
128 |
-
with gr.Accordion("Advanced options", open=True):
|
129 |
num_images = gr.Slider(
|
130 |
label="Number of Images",
|
131 |
minimum=1,
|
@@ -172,7 +190,7 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
172 |
minimum=0.1,
|
173 |
maximum=6,
|
174 |
step=0.1,
|
175 |
-
value=
|
176 |
)
|
177 |
num_inference_steps = gr.Slider(
|
178 |
label="Number of inference steps",
|
@@ -182,20 +200,19 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
182 |
value=23,
|
183 |
)
|
184 |
|
185 |
-
with gr.Column(scale=2):
|
186 |
-
result = gr.Gallery(label="Result", columns=1, show_label=False)
|
187 |
-
|
188 |
gr.Examples(
|
189 |
examples=examples,
|
190 |
inputs=prompt,
|
191 |
cache_examples=False
|
192 |
)
|
|
|
193 |
use_negative_prompt.change(
|
194 |
fn=lambda x: gr.update(visible=x),
|
195 |
inputs=use_negative_prompt,
|
196 |
outputs=negative_prompt,
|
197 |
api_name=False,
|
198 |
)
|
|
|
199 |
gr.on(
|
200 |
triggers=[
|
201 |
prompt.submit,
|
@@ -218,6 +235,6 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
218 |
outputs=[result, seed],
|
219 |
api_name="run",
|
220 |
)
|
221 |
-
|
222 |
if __name__ == "__main__":
|
223 |
demo.queue(max_size=40).launch()
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
#patch 2.0 ()
|
3 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
4 |
+
# of this software and associated documentation files (the "Software"), to deal
|
5 |
+
# in the Software without restriction, including without limitation the rights
|
6 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
7 |
+
# copies of the Software, and to permit persons to whom the Software is
|
8 |
+
# furnished to do so, subject to the following conditions:
|
9 |
+
#
|
10 |
+
# ...
|
11 |
import os
|
12 |
import random
|
13 |
import uuid
|
|
|
19 |
import torch
|
20 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
21 |
|
22 |
+
#Load the HTML content
|
23 |
+
#html_file_url = "https://prithivmlmods-hamster-static.static.hf.space/index.html"
|
24 |
+
#html_content = f'<iframe src="{html_file_url}" style="width:100%; height:180px; border:none;"></iframe>'
|
25 |
+
#html_file_url = "https://prithivmlmods-static-loading-theme.static.hf.space/index.html"
|
26 |
+
|
27 |
+
#html_file_url = "https://prithivhamster.vercel.app/"
|
28 |
+
#html_content = f'<iframe src="{html_file_url}" style="width:100%; height:400px; border:none"></iframe>'
|
29 |
+
|
30 |
+
DESCRIPTIONx = """## STABLE HAMSTER 🐹
|
31 |
+
|
32 |
+
"""
|
33 |
+
|
34 |
css = '''
|
35 |
+
.gradio-container{max-width: 560px !important}
|
36 |
h1{text-align:center}
|
37 |
footer {
|
38 |
visibility: hidden
|
39 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
'''
|
41 |
|
42 |
examples = [
|
|
|
|
|
|
|
43 |
"3d image, cute girl, in the style of Pixar --ar 1:2 --stylize 750, 4K resolution highlights, Sharp focus, octane render, ray tracing, Ultra-High-Definition, 8k, UHD, HDR, (Masterpiece:1.5), (best quality:1.5)",
|
44 |
"Cold coffee in a cup bokeh --ar 85:128 --v 6.0 --style raw5, 4K",
|
45 |
+
"Vector illustration of a horse, vector graphic design with flat colors on an brown background in the style of vector art, using simple shapes and graphics with simple details, professionally designed as a tshirt logo ready for print on a white background. --ar 89:82 --v 6.0 --style raw",
|
46 |
+
"Man in brown leather jacket posing for camera, in the style of sleek and stylized, clockpunk, subtle shades, exacting precision, ferrania p30 --ar 67:101 --v 5",
|
47 |
+
"Commercial photography, giant burger, white lighting, studio light, 8k octane rendering, high resolution photography, insanely detailed, fine details, on white isolated plain, 8k, commercial photography, stock photo, professional color grading, --v 4 --ar 9:16 "
|
48 |
+
|
49 |
]
|
50 |
|
51 |
+
|
52 |
+
MODEL_ID = os.getenv("MODEL_VAL_PATH") #Use SDXL Model as "MODEL_REPO" --------->>> ”VALUE”.
|
53 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
54 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
55 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
56 |
+
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) # Allow generating multiple images at once
|
57 |
|
58 |
+
#Load model outside of function
|
59 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
60 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
61 |
MODEL_ID,
|
|
|
65 |
).to(device)
|
66 |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
67 |
|
68 |
+
# <compile speedup >
|
69 |
if USE_TORCH_COMPILE:
|
70 |
pipe.compile()
|
71 |
|
72 |
+
# Offloading capacity (RAM)
|
73 |
if ENABLE_CPU_OFFLOAD:
|
74 |
pipe.enable_model_cpu_offload()
|
75 |
|
|
|
103 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
104 |
generator = torch.Generator(device=device).manual_seed(seed)
|
105 |
|
106 |
+
#Options
|
107 |
options = {
|
108 |
"prompt": [prompt] * num_images,
|
109 |
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
|
|
|
118 |
if use_resolution_binning:
|
119 |
options["use_resolution_binning"] = True
|
120 |
|
121 |
+
#Images potential batches
|
122 |
images = []
|
123 |
for i in range(0, num_images, BATCH_SIZE):
|
124 |
batch_options = options.copy()
|
|
|
131 |
return image_paths, seed
|
132 |
|
133 |
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
134 |
+
gr.Markdown(DESCRIPTIONx)
|
135 |
+
with gr.Group():
|
136 |
+
with gr.Row():
|
137 |
prompt = gr.Text(
|
138 |
label="Prompt",
|
139 |
show_label=False,
|
|
|
141 |
placeholder="Enter your prompt",
|
142 |
container=False,
|
143 |
)
|
144 |
+
run_button = gr.Button("Run", scale=0)
|
145 |
+
result = gr.Gallery(label="Result", columns=1, show_label=False)
|
146 |
+
with gr.Accordion("Advanced options", open=False, visible=False):
|
|
|
|
|
|
|
|
|
147 |
num_images = gr.Slider(
|
148 |
label="Number of Images",
|
149 |
minimum=1,
|
|
|
190 |
minimum=0.1,
|
191 |
maximum=6,
|
192 |
step=0.1,
|
193 |
+
value=3.0,
|
194 |
)
|
195 |
num_inference_steps = gr.Slider(
|
196 |
label="Number of inference steps",
|
|
|
200 |
value=23,
|
201 |
)
|
202 |
|
|
|
|
|
|
|
203 |
gr.Examples(
|
204 |
examples=examples,
|
205 |
inputs=prompt,
|
206 |
cache_examples=False
|
207 |
)
|
208 |
+
|
209 |
use_negative_prompt.change(
|
210 |
fn=lambda x: gr.update(visible=x),
|
211 |
inputs=use_negative_prompt,
|
212 |
outputs=negative_prompt,
|
213 |
api_name=False,
|
214 |
)
|
215 |
+
|
216 |
gr.on(
|
217 |
triggers=[
|
218 |
prompt.submit,
|
|
|
235 |
outputs=[result, seed],
|
236 |
api_name="run",
|
237 |
)
|
238 |
+
|
239 |
if __name__ == "__main__":
|
240 |
demo.queue(max_size=40).launch()
|