Spaces:
Runtime error
Runtime error
Initial Commit
Browse files- app.py +190 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import urllib.request
|
2 |
+
import fitz
|
3 |
+
import re
|
4 |
+
import numpy as np
|
5 |
+
import tensorflow_hub as hub
|
6 |
+
import openai
|
7 |
+
import gradio as gr
|
8 |
+
import os
|
9 |
+
from tqdm.auto import tqdm
|
10 |
+
from sklearn.neighbors import NearestNeighbors
|
11 |
+
|
12 |
+
|
13 |
+
def download_pdf(url, output_path):
|
14 |
+
urllib.request.urlretrieve(url, output_path)
|
15 |
+
|
16 |
+
|
17 |
+
def preprocess(text):
|
18 |
+
text = text.replace('\n', ' ')
|
19 |
+
text = re.sub('\s+', ' ', text)
|
20 |
+
return text
|
21 |
+
|
22 |
+
|
23 |
+
def pdf_to_text(path, start_page=1, end_page=None):
|
24 |
+
doc = fitz.open(path)
|
25 |
+
total_pages = doc.page_count
|
26 |
+
|
27 |
+
if end_page is None:
|
28 |
+
end_page = total_pages
|
29 |
+
|
30 |
+
text_list = []
|
31 |
+
|
32 |
+
for i in tqdm(range(start_page-1, end_page)):
|
33 |
+
text = doc.load_page(i).get_text("text")
|
34 |
+
text = preprocess(text)
|
35 |
+
text_list.append(text)
|
36 |
+
|
37 |
+
doc.close()
|
38 |
+
return text_list
|
39 |
+
|
40 |
+
|
41 |
+
def text_to_chunks(texts, word_length=100, start_page=1):
|
42 |
+
text_toks = [t.split(' ') for t in texts]
|
43 |
+
page_nums = []
|
44 |
+
chunks = []
|
45 |
+
|
46 |
+
for idx, words in enumerate(text_toks):
|
47 |
+
for i in range(0, len(words), word_length):
|
48 |
+
chunk = words[i:i+word_length]
|
49 |
+
if (i+word_length) > len(words) and (len(chunk) < word_length) and (
|
50 |
+
len(text_toks) != (idx+1)):
|
51 |
+
text_toks[idx+1] = chunk + text_toks[idx+1]
|
52 |
+
continue
|
53 |
+
chunk = ' '.join(chunk).strip()
|
54 |
+
chunk = f'[{idx+start_page}]' + ' ' + '"' + chunk + '"'
|
55 |
+
chunks.append(chunk)
|
56 |
+
return chunks
|
57 |
+
|
58 |
+
|
59 |
+
class SemanticSearch:
|
60 |
+
|
61 |
+
def __init__(self):
|
62 |
+
self.use = hub.load('https://tfhub.dev/google/universal-sentence-encoder/4')
|
63 |
+
self.fitted = False
|
64 |
+
|
65 |
+
|
66 |
+
def fit(self, data, batch=1000, n_neighbors=5):
|
67 |
+
self.data = data
|
68 |
+
self.embeddings = self.get_text_embedding(data, batch=batch)
|
69 |
+
n_neighbors = min(n_neighbors, len(self.embeddings))
|
70 |
+
self.nn = NearestNeighbors(n_neighbors=n_neighbors)
|
71 |
+
self.nn.fit(self.embeddings)
|
72 |
+
self.fitted = True
|
73 |
+
|
74 |
+
|
75 |
+
def __call__(self, text, return_data=True):
|
76 |
+
inp_emb = self.use([text])
|
77 |
+
neighbors = self.nn.kneighbors(inp_emb, return_distance=False)[0]
|
78 |
+
|
79 |
+
if return_data:
|
80 |
+
return [self.data[i] for i in neighbors]
|
81 |
+
else:
|
82 |
+
return neighbors
|
83 |
+
|
84 |
+
|
85 |
+
def get_text_embedding(self, texts, batch=1000):
|
86 |
+
embeddings = []
|
87 |
+
for i in tqdm(range(0, len(texts), batch)):
|
88 |
+
text_batch = texts[i:(i+batch)]
|
89 |
+
emb_batch = self.use(text_batch)
|
90 |
+
embeddings.append(emb_batch)
|
91 |
+
embeddings = np.vstack(embeddings)
|
92 |
+
return embeddings
|
93 |
+
|
94 |
+
|
95 |
+
openai.api_key = "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"
|
96 |
+
recommender = SemanticSearch()
|
97 |
+
|
98 |
+
def load_recommender(path, start_page=1):
|
99 |
+
global recommender
|
100 |
+
texts = pdf_to_text(path, start_page=start_page)
|
101 |
+
chunks = text_to_chunks(texts, start_page=start_page)
|
102 |
+
recommender.fit(chunks)
|
103 |
+
return 'Corpus Loaded.'
|
104 |
+
|
105 |
+
|
106 |
+
def generate_text(prompt, engine="text-davinci-003"):
|
107 |
+
completions = openai.Completion.create(
|
108 |
+
engine=engine,
|
109 |
+
prompt=prompt,
|
110 |
+
max_tokens=512,
|
111 |
+
n=1,
|
112 |
+
stop=None,
|
113 |
+
temperature=0.7,
|
114 |
+
)
|
115 |
+
message = completions.choices[0].text
|
116 |
+
return message
|
117 |
+
|
118 |
+
|
119 |
+
def generate_answer(question):
|
120 |
+
topn_chunks = recommender(question)
|
121 |
+
prompt = ""
|
122 |
+
prompt += 'search results:\n\n'
|
123 |
+
for c in topn_chunks:
|
124 |
+
prompt += c + '\n\n'
|
125 |
+
|
126 |
+
prompt += "Instructions: Compose a comprehensive reply to the query using the search results given."\
|
127 |
+
"Cite each reference using [number] notation (every result has this number at the beginning)."\
|
128 |
+
"Citation should be done at the end of each sentence. If the search results mention multiple subjects"\
|
129 |
+
"with the same name, create separate answers for each. Only include information found in the results and"\
|
130 |
+
"don't add any additional information. Make sure the answer is correct and don't output false content."\
|
131 |
+
"If the text does not relate to the query, simply state 'Found Nothing'. Don't write 'Answer:'"\
|
132 |
+
"Directly start the answer.\n"
|
133 |
+
|
134 |
+
prompt += f"Query: {question}\n\n"
|
135 |
+
answer = generate_text(prompt)
|
136 |
+
return answer
|
137 |
+
|
138 |
+
|
139 |
+
def load_corpus(url, file):
|
140 |
+
if url.strip() == '' and file == None:
|
141 |
+
return '[ERROR]: Both URL and PDF is empty. Provide atleast one.'
|
142 |
+
|
143 |
+
if url.strip() != '' and file != None:
|
144 |
+
return '[ERROR]: Both URL and PDF is provided. Please provide only one (eiter URL or PDF).'
|
145 |
+
|
146 |
+
if url.strip() != '':
|
147 |
+
glob_url = url
|
148 |
+
download_pdf(glob_url, 'corpus.pdf')
|
149 |
+
load_recommender('corpus.pdf')
|
150 |
+
|
151 |
+
else:
|
152 |
+
old_file_name = file.name
|
153 |
+
file_name = file.name
|
154 |
+
file_name = file_name[:-12] + file_name[-4:]
|
155 |
+
os.rename(old_file_name, file_name)
|
156 |
+
load_recommender(file_name)
|
157 |
+
|
158 |
+
return 'Corpus Loaded. Now you can ask Questions.'
|
159 |
+
|
160 |
+
|
161 |
+
def question_answer(question):
|
162 |
+
if question.strip() == '':
|
163 |
+
return '[ERROR]: Question field is empty'
|
164 |
+
|
165 |
+
if not recommender.fitted:
|
166 |
+
return '[ERROR]: First, provide a URL or Upload a PDF and hit submit (see left panel)'
|
167 |
+
|
168 |
+
return generate_answer(question)
|
169 |
+
|
170 |
+
|
171 |
+
with gr.Blocks() as app:
|
172 |
+
with gr.Row():
|
173 |
+
|
174 |
+
with gr.Group():
|
175 |
+
url = gr.Textbox(label='URL')
|
176 |
+
gr.Markdown("<center><h5>or<h5></center>")
|
177 |
+
file = gr.File(label='PDF', file_types=['.pdf'])
|
178 |
+
stataus = gr.Textbox(label="Output")
|
179 |
+
btn1 = gr.Button(value='Submit')
|
180 |
+
btn1.style(full_width=True)
|
181 |
+
btn1.click(load_corpus, inputs=[url, file], outputs=[stataus])
|
182 |
+
|
183 |
+
with gr.Group():
|
184 |
+
question = gr.Textbox(label='question')
|
185 |
+
btn2 = gr.Button(value='Submit')
|
186 |
+
btn2.style(full_width=True)
|
187 |
+
answer = gr.Textbox(label='answer')
|
188 |
+
btn2.click(question_answer, inputs=[question], outputs=[answer])
|
189 |
+
|
190 |
+
app.launch(debug=True)
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
PyMuPDF
|
2 |
+
openai
|
3 |
+
tensorflow-hub==0.12.0
|