import urllib.request import fitz import re import numpy as np import tensorflow_hub as hub import openai import gradio as gr import os from tqdm.auto import tqdm from sklearn.neighbors import NearestNeighbors def download_pdf(url, output_path): urllib.request.urlretrieve(url, output_path) def preprocess(text): text = text.replace('\n', ' ') text = re.sub('\s+', ' ', text) return text def pdf_to_text(path, start_page=1, end_page=None): doc = fitz.open(path) total_pages = doc.page_count if end_page is None: end_page = total_pages text_list = [] for i in tqdm(range(start_page-1, end_page)): text = doc.load_page(i).get_text("text") text = preprocess(text) text_list.append(text) doc.close() return text_list def text_to_chunks(texts, word_length=100, start_page=1): text_toks = [t.split(' ') for t in texts] page_nums = [] chunks = [] for idx, words in enumerate(text_toks): for i in range(0, len(words), word_length): chunk = words[i:i+word_length] if (i+word_length) > len(words) and (len(chunk) < word_length) and ( len(text_toks) != (idx+1)): text_toks[idx+1] = chunk + text_toks[idx+1] continue chunk = ' '.join(chunk).strip() chunk = f'[{idx+start_page}]' + ' ' + '"' + chunk + '"' chunks.append(chunk) return chunks class SemanticSearch: def __init__(self): self.use = hub.load('https://tfhub.dev/google/universal-sentence-encoder/4') self.fitted = False def fit(self, data, batch=1000, n_neighbors=5): self.data = data self.embeddings = self.get_text_embedding(data, batch=batch) n_neighbors = min(n_neighbors, len(self.embeddings)) self.nn = NearestNeighbors(n_neighbors=n_neighbors) self.nn.fit(self.embeddings) self.fitted = True def __call__(self, text, return_data=True): inp_emb = self.use([text]) neighbors = self.nn.kneighbors(inp_emb, return_distance=False)[0] if return_data: return [self.data[i] for i in neighbors] else: return neighbors def get_text_embedding(self, texts, batch=1000): embeddings = [] for i in tqdm(range(0, len(texts), batch)): text_batch = texts[i:(i+batch)] emb_batch = self.use(text_batch) embeddings.append(emb_batch) embeddings = np.vstack(embeddings) return embeddings openai.api_key = "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" recommender = SemanticSearch() def load_recommender(path, start_page=1): global recommender texts = pdf_to_text(path, start_page=start_page) chunks = text_to_chunks(texts, start_page=start_page) recommender.fit(chunks) return 'Corpus Loaded.' def generate_text(prompt, engine="text-davinci-003"): completions = openai.Completion.create( engine=engine, prompt=prompt, max_tokens=512, n=1, stop=None, temperature=0.7, ) message = completions.choices[0].text return message def generate_answer(question): topn_chunks = recommender(question) prompt = "" prompt += 'search results:\n\n' for c in topn_chunks: prompt += c + '\n\n' prompt += "Instructions: Compose a comprehensive reply to the query using the search results given."\ "Cite each reference using [number] notation (every result has this number at the beginning)."\ "Citation should be done at the end of each sentence. If the search results mention multiple subjects"\ "with the same name, create separate answers for each. Only include information found in the results and"\ "don't add any additional information. Make sure the answer is correct and don't output false content."\ "If the text does not relate to the query, simply state 'Found Nothing'. Don't write 'Answer:'"\ "Directly start the answer.\n" prompt += f"Query: {question}\n\n" answer = generate_text(prompt) return answer def load_corpus(url, file): if url.strip() == '' and file == None: return '[ERROR]: Both URL and PDF is empty. Provide atleast one.' if url.strip() != '' and file != None: return '[ERROR]: Both URL and PDF is provided. Please provide only one (eiter URL or PDF).' if url.strip() != '': glob_url = url download_pdf(glob_url, 'corpus.pdf') load_recommender('corpus.pdf') else: old_file_name = file.name file_name = file.name file_name = file_name[:-12] + file_name[-4:] os.rename(old_file_name, file_name) load_recommender(file_name) return 'Corpus Loaded. Now you can ask Questions.' def question_answer(question): if question.strip() == '': return '[ERROR]: Question field is empty' if not recommender.fitted: return '[ERROR]: First, provide a URL or Upload a PDF and hit submit (see left panel)' return generate_answer(question) with gr.Blocks() as app: with gr.Row(): with gr.Group(): url = gr.Textbox(label='URL') gr.Markdown("
or
") file = gr.File(label='PDF', file_types=['.pdf']) stataus = gr.Textbox(label="Output") btn1 = gr.Button(value='Submit') btn1.style(full_width=True) btn1.click(load_corpus, inputs=[url, file], outputs=[stataus]) with gr.Group(): question = gr.Textbox(label='question') btn2 = gr.Button(value='Submit') btn2.style(full_width=True) answer = gr.Textbox(label='answer') btn2.click(question_answer, inputs=[question], outputs=[answer]) app.launch(debug=True)