priyankasharma5882
commited on
Commit
•
2e5a63e
1
Parent(s):
b2df2c1
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
import gradio as gr
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
new_model = tf.keras.models.load_model('breedclassification.h5')
|
7 |
+
|
8 |
+
def predict_classes(link):
|
9 |
+
img = cv2.resize(link,(224,224))
|
10 |
+
img = img/255
|
11 |
+
img = img.reshape(-1,224,224,3)
|
12 |
+
pred = np.round(new_model.predict(img)).argmax(axis = 1)
|
13 |
+
dic = {0: 'Herding breed', 1: 'Hound breed', 2: 'Non sporting breed', 3: 'Terrior breed', 4:'working breed', 5: 'sporting breed', 6: 'toy breed'}
|
14 |
+
print(dic.get(int(pred)))
|
15 |
+
a = dic.get(int(pred))
|
16 |
+
return a
|
17 |
+
|
18 |
+
label = gr.outputs.Label(num_top_classes=7)
|
19 |
+
gr.Interface(fn=predict_classes, inputs='image', outputs=label,interpretation='default', title = 'Breed Classification detection ', description = 'It will classify 7 different species: You can drage the images from google. 1. Terrier 2. Toy 3. Working 4. Sporting 5. Haund 6. Herding 7. Non sporting Group ').launch()
|