Spaces:
Sleeping
Sleeping
main app file and requirements file
Browse files- .env +1 -0
- app.py +79 -0
- requirements.txt +8 -0
.env
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
NVIDIA_API_KEY = "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"
|
app.py
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import os
|
| 3 |
+
from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings, ChatNVIDIA
|
| 4 |
+
from langchain_community.document_loaders import PyPDFLoader
|
| 5 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 6 |
+
from langchain.chains.combine_documents import create_stuff_documents_chain
|
| 7 |
+
from langchain_core.prompts import ChatPromptTemplate
|
| 8 |
+
from langchain.chains import create_retrieval_chain
|
| 9 |
+
from langchain_community.vectorstores import FAISS
|
| 10 |
+
|
| 11 |
+
from dotenv import load_dotenv
|
| 12 |
+
import tempfile
|
| 13 |
+
import time
|
| 14 |
+
|
| 15 |
+
load_dotenv()
|
| 16 |
+
|
| 17 |
+
# load the Nvidia API key
|
| 18 |
+
os.environ['NVIDIA_API_KEY'] = os.getenv('NVIDIA_API_KEY')
|
| 19 |
+
|
| 20 |
+
llm = ChatNVIDIA(model="meta/llama3-70b-instruct")
|
| 21 |
+
|
| 22 |
+
def vector_embedding(pdf_file):
|
| 23 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file:
|
| 24 |
+
tmp_file.write(pdf_file.getvalue())
|
| 25 |
+
tmp_file_path = tmp_file.name
|
| 26 |
+
|
| 27 |
+
st.session_state.embeddings = NVIDIAEmbeddings()
|
| 28 |
+
st.session_state.loader = PyPDFLoader(tmp_file_path)
|
| 29 |
+
st.session_state.docs = st.session_state.loader.load()
|
| 30 |
+
st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=50)
|
| 31 |
+
st.session_state.final_documents = st.session_state.text_splitter.split_documents(st.session_state.docs)
|
| 32 |
+
st.session_state.vectors = FAISS.from_documents(st.session_state.final_documents, st.session_state.embeddings)
|
| 33 |
+
|
| 34 |
+
os.unlink(tmp_file_path)
|
| 35 |
+
|
| 36 |
+
st.title("NVIDIA NIM Demo")
|
| 37 |
+
|
| 38 |
+
prompt = ChatPromptTemplate.from_template(
|
| 39 |
+
"""
|
| 40 |
+
Answer the questions based on the provided context only.
|
| 41 |
+
Please provide the most accurate response based on the question
|
| 42 |
+
<context>
|
| 43 |
+
{context}
|
| 44 |
+
</context>
|
| 45 |
+
Question: {input}
|
| 46 |
+
"""
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
uploaded_file = st.file_uploader("Choose a PDF file", type="pdf")
|
| 50 |
+
|
| 51 |
+
if uploaded_file is not None:
|
| 52 |
+
if st.button("Process PDF"):
|
| 53 |
+
with st.spinner("Processing PDF..."):
|
| 54 |
+
vector_embedding(uploaded_file)
|
| 55 |
+
st.success("FAISS Vector Store DB is ready using NvidiaEmbedding")
|
| 56 |
+
|
| 57 |
+
prompt1 = st.text_input("Enter your question about the uploaded document")
|
| 58 |
+
|
| 59 |
+
if prompt1 and 'vectors' in st.session_state:
|
| 60 |
+
document_chain = create_stuff_documents_chain(llm, prompt)
|
| 61 |
+
retriever = st.session_state.vectors.as_retriever()
|
| 62 |
+
retrieval_chain = create_retrieval_chain(retriever, document_chain)
|
| 63 |
+
|
| 64 |
+
with st.spinner("Generating answer..."):
|
| 65 |
+
start = time.process_time()
|
| 66 |
+
response = retrieval_chain.invoke({'input': prompt1})
|
| 67 |
+
end = time.process_time()
|
| 68 |
+
|
| 69 |
+
st.write("Answer:", response['answer'])
|
| 70 |
+
st.write(f"Response time: {end - start:.2f} seconds")
|
| 71 |
+
|
| 72 |
+
with st.expander("Document Similarity Search"):
|
| 73 |
+
for i, doc in enumerate(response["context"]):
|
| 74 |
+
st.write(f"Chunk {i + 1}:")
|
| 75 |
+
st.write(doc.page_content)
|
| 76 |
+
st.write("------------------------------------------")
|
| 77 |
+
else:
|
| 78 |
+
if prompt1:
|
| 79 |
+
st.warning("Please upload and process a PDF document first.")
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
openai
|
| 2 |
+
python-dotenv
|
| 3 |
+
langchain_nvidia_ai_endpoints
|
| 4 |
+
langchain_community
|
| 5 |
+
faiss-cpu
|
| 6 |
+
streamlit
|
| 7 |
+
pypdf
|
| 8 |
+
langchain
|