import streamlit as st import os from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings, ChatNVIDIA from langchain_community.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.chains.combine_documents import create_stuff_documents_chain from langchain_core.prompts import ChatPromptTemplate from langchain.chains import create_retrieval_chain from langchain_community.vectorstores import FAISS from dotenv import load_dotenv import tempfile import time load_dotenv() # load the Nvidia API key os.environ['NVIDIA_API_KEY'] = os.getenv('NVIDIA_API_KEY') llm = ChatNVIDIA(model="meta/llama3-70b-instruct") def vector_embedding(pdf_file): with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file: tmp_file.write(pdf_file.getvalue()) tmp_file_path = tmp_file.name st.session_state.embeddings = NVIDIAEmbeddings() st.session_state.loader = PyPDFLoader(tmp_file_path) st.session_state.docs = st.session_state.loader.load() st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=50) st.session_state.final_documents = st.session_state.text_splitter.split_documents(st.session_state.docs) st.session_state.vectors = FAISS.from_documents(st.session_state.final_documents, st.session_state.embeddings) os.unlink(tmp_file_path) st.title("Chat with PDF") prompt = ChatPromptTemplate.from_template( """ Answer the questions based on the provided context only. Please provide the most accurate response based on the question {context} Question: {input} """ ) uploaded_file = st.file_uploader("Choose a PDF file", type="pdf") if uploaded_file is not None: if st.button("Process PDF"): with st.spinner("Processing PDF..."): vector_embedding(uploaded_file) st.success("FAISS Vector Store DB is ready using NvidiaEmbedding") prompt1 = st.text_input("Enter your question about the uploaded document") if prompt1 and 'vectors' in st.session_state: document_chain = create_stuff_documents_chain(llm, prompt) retriever = st.session_state.vectors.as_retriever() retrieval_chain = create_retrieval_chain(retriever, document_chain) with st.spinner("Generating answer..."): start = time.process_time() response = retrieval_chain.invoke({'input': prompt1}) end = time.process_time() st.write("Answer:", response['answer']) st.write(f"Response time: {end - start:.2f} seconds") with st.expander("Document Similarity Search"): for i, doc in enumerate(response["context"]): st.write(f"Chunk {i + 1}:") st.write(doc.page_content) st.write("------------------------------------------") else: if prompt1: st.warning("Please upload and process a PDF document first.")