Spaces:
Sleeping
Sleeping
chore: updating app with linked model
Browse files
app.py
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
import utils
|
|
|
|
|
2 |
import streamlit as st
|
3 |
import tensorflow as tf
|
4 |
|
@@ -13,4 +15,28 @@ image, preprocessed_image = utils.load_image_from_url(
|
|
13 |
image_url,
|
14 |
model_type="dino"
|
15 |
)
|
16 |
-
st.image(image, caption="Original Image")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import utils
|
2 |
+
from huggingface_hub.keras_mixin import from_pretrained_keras
|
3 |
+
from PIL import Image
|
4 |
import streamlit as st
|
5 |
import tensorflow as tf
|
6 |
|
|
|
15 |
image_url,
|
16 |
model_type="dino"
|
17 |
)
|
18 |
+
st.image(image, caption="Original Image")
|
19 |
+
|
20 |
+
# Load the DINO model
|
21 |
+
dino = from_pretrained_keras("probing-vits/vit-dino-base16")
|
22 |
+
|
23 |
+
# Get the attention scores
|
24 |
+
_, attention_score_dict = dino.predict(preprocessed_image)
|
25 |
+
|
26 |
+
# De-normalize the image for visual clarity.
|
27 |
+
in1k_mean = tf.constant([0.485 * 255, 0.456 * 255, 0.406 * 255])
|
28 |
+
in1k_std = tf.constant([0.229 * 255, 0.224 * 255, 0.225 * 255])
|
29 |
+
preprocessed_img_orig = (preprocessed_image * in1k_std) + in1k_mean
|
30 |
+
preprocessed_img_orig = preprocessed_img_orig / 255.
|
31 |
+
preprocessed_img_orig = tf.clip_by_value(preprocessed_img_orig, 0.0, 1.0).numpy()
|
32 |
+
|
33 |
+
attentions = utils.attention_heatmap(
|
34 |
+
attention_score_dict=attention_score_dict,
|
35 |
+
image=preprocessed_img_orig
|
36 |
+
)
|
37 |
+
|
38 |
+
utils.plot(attentions=attentions, image=preprocessed_img_orig)
|
39 |
+
|
40 |
+
# Show the attention maps
|
41 |
+
image = Image.open("heat_map.png")
|
42 |
+
st.image(image, caption="Attention Heat Maps")
|