index_demo / app.py
profoz's picture
upgrade to davinci 3
ffc063e
import openai
import requests
import streamlit as st
from bs4 import BeautifulSoup
from sentence_transformers import CrossEncoder
from transformers import pipeline
all_documents = {}
def qa_gpt3(question, context):
print(question, context)
openai.api_key = st.secrets["openai_key"]
response = openai.Completion.create(
model="text-davinci-003",
prompt=f"Answer given the following context: {context}\n\nQuestion: {question}",
temperature=0.7,
max_tokens=256,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
print(response)
return {'answer': response['choices'][0]['text'].strip()}
st.title('Document Question Answering System')
qa_model = None
crawl_urls = st.checkbox('Crawl?', value=False)
document_text = st.text_area(
label="Links (Comma separated)", height=100,
value='https://www.databricks.com/blog/2022/11/15/values-define-databricks-culture.html, https://databricks.com/product/databricks-runtime-for-machine-learning/faq'
)
query = st.text_input("Query")
qa_option = st.selectbox('Q/A Answerer', ('gpt3', 'a-ware/bart-squadv2'))
tokenizing = st.selectbox('How to Tokenize',
("Don't (use entire body as document)", 'Newline (split by newline character)', 'Combo'))
if qa_option == 'gpt3':
qa_model = qa_gpt3
else:
qa_model = pipeline("question-answering", qa_option)
st.write(f'Using {qa_option} as the Q/A model')
encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
def get_relevent_passage(question, documents):
query_paragraph_list = [(question, para) for para in list(documents.keys()) if len(para.strip()) > 0]
scores = encoder.predict(query_paragraph_list)
top_5_indices = scores.argsort()[-5:]
top_5_query_paragraph_list = [query_paragraph_list[i] for i in top_5_indices]
top_5_query_paragraph_list.reverse()
return top_5_query_paragraph_list[0][1]
def answer_question(query, context):
answer = qa_model(question=query, context=context)['answer']
return answer
def get_documents(document_text, crawl=crawl_urls):
urls = document_text.split(',')
for url in urls:
st.write(f'Crawling {url}')
if url in set(all_documents.values()):
continue
html = requests.get(url).text
soup = BeautifulSoup(html, 'html.parser')
if crawl:
st.write('Give me a sec, crawling..')
import re
more_urls = re.findall('http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+',
html)
more_urls = list(
set([m for m in more_urls if m[-4] != '.' and m[-3] != '.' and m.split('/')[:3] == url.split('/')[:3]]))
for more_url in more_urls:
all_documents.update(get_documents(more_url, crawl=False))
body = "\n".join([x for x in soup.body.get_text().split('\n') if len(x) > 10])
print(body)
if tokenizing == "Don't (use entire body as document)":
document_paragraphs = [body]
elif tokenizing == 'Newline (split by newline character)':
document_paragraphs = [n for n in body.split('\n') if len(n) > 250]
elif tokenizing == 'Combo':
document_paragraphs = [body] + [n for n in body.split('\n') if len(n) > 250]
for document_paragraph in document_paragraphs:
all_documents[document_paragraph] = url
return all_documents
if len(document_text.strip()) > 0 and len(query.strip()) > 0 and qa_model and encoder:
st.write('Hmmm let me think about that..')
document_text = document_text.strip()
documents = get_documents(document_text)
st.write(f'I am looking through {len(set(documents.values()))} sites')
query = query.strip()
context = get_relevent_passage(query, documents)
answer = answer_question(query, context)
relevant_url = documents[context]
st.write('Check the answer below...with reference text')
st.header("ANSWER: " + answer)
st.subheader("REFERENCE: " + context)
st.subheader("REFERENCE URL: " + relevant_url)