Spaces:
Sleeping
Sleeping
import openai | |
import requests | |
import streamlit as st | |
from bs4 import BeautifulSoup | |
from sentence_transformers import CrossEncoder | |
from transformers import pipeline | |
all_documents = {} | |
def qa_gpt3(question, context): | |
print(question, context) | |
openai.api_key = st.secrets["openai_key"] | |
response = openai.Completion.create( | |
model="text-davinci-003", | |
prompt=f"Answer given the following context: {context}\n\nQuestion: {question}", | |
temperature=0.7, | |
max_tokens=256, | |
top_p=1, | |
frequency_penalty=0, | |
presence_penalty=0 | |
) | |
print(response) | |
return {'answer': response['choices'][0]['text'].strip()} | |
st.title('Document Question Answering System') | |
qa_model = None | |
crawl_urls = st.checkbox('Crawl?', value=False) | |
document_text = st.text_area( | |
label="Links (Comma separated)", height=100, | |
value='https://www.databricks.com/blog/2022/11/15/values-define-databricks-culture.html, https://databricks.com/product/databricks-runtime-for-machine-learning/faq' | |
) | |
query = st.text_input("Query") | |
qa_option = st.selectbox('Q/A Answerer', ('gpt3', 'a-ware/bart-squadv2')) | |
tokenizing = st.selectbox('How to Tokenize', | |
("Don't (use entire body as document)", 'Newline (split by newline character)', 'Combo')) | |
if qa_option == 'gpt3': | |
qa_model = qa_gpt3 | |
else: | |
qa_model = pipeline("question-answering", qa_option) | |
st.write(f'Using {qa_option} as the Q/A model') | |
encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2') | |
def get_relevent_passage(question, documents): | |
query_paragraph_list = [(question, para) for para in list(documents.keys()) if len(para.strip()) > 0] | |
scores = encoder.predict(query_paragraph_list) | |
top_5_indices = scores.argsort()[-5:] | |
top_5_query_paragraph_list = [query_paragraph_list[i] for i in top_5_indices] | |
top_5_query_paragraph_list.reverse() | |
return top_5_query_paragraph_list[0][1] | |
def answer_question(query, context): | |
answer = qa_model(question=query, context=context)['answer'] | |
return answer | |
def get_documents(document_text, crawl=crawl_urls): | |
urls = document_text.split(',') | |
for url in urls: | |
st.write(f'Crawling {url}') | |
if url in set(all_documents.values()): | |
continue | |
html = requests.get(url).text | |
soup = BeautifulSoup(html, 'html.parser') | |
if crawl: | |
st.write('Give me a sec, crawling..') | |
import re | |
more_urls = re.findall('http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+', | |
html) | |
more_urls = list( | |
set([m for m in more_urls if m[-4] != '.' and m[-3] != '.' and m.split('/')[:3] == url.split('/')[:3]])) | |
for more_url in more_urls: | |
all_documents.update(get_documents(more_url, crawl=False)) | |
body = "\n".join([x for x in soup.body.get_text().split('\n') if len(x) > 10]) | |
print(body) | |
if tokenizing == "Don't (use entire body as document)": | |
document_paragraphs = [body] | |
elif tokenizing == 'Newline (split by newline character)': | |
document_paragraphs = [n for n in body.split('\n') if len(n) > 250] | |
elif tokenizing == 'Combo': | |
document_paragraphs = [body] + [n for n in body.split('\n') if len(n) > 250] | |
for document_paragraph in document_paragraphs: | |
all_documents[document_paragraph] = url | |
return all_documents | |
if len(document_text.strip()) > 0 and len(query.strip()) > 0 and qa_model and encoder: | |
st.write('Hmmm let me think about that..') | |
document_text = document_text.strip() | |
documents = get_documents(document_text) | |
st.write(f'I am looking through {len(set(documents.values()))} sites') | |
query = query.strip() | |
context = get_relevent_passage(query, documents) | |
answer = answer_question(query, context) | |
relevant_url = documents[context] | |
st.write('Check the answer below...with reference text') | |
st.header("ANSWER: " + answer) | |
st.subheader("REFERENCE: " + context) | |
st.subheader("REFERENCE URL: " + relevant_url) | |