Spaces:
Running
Running
File size: 5,560 Bytes
2217335 9803bf8 f6186de 2217335 f5848c0 2217335 d878e42 1cdd61e 033e5a9 2217335 9803bf8 2217335 9803bf8 2217335 a5d9210 2217335 9803bf8 708527c 9803bf8 2217335 9803bf8 2217335 9803bf8 c774338 2217335 06e57fe 2217335 15c94ad 47523db 2217335 47523db c8bd9ca 2217335 359b142 06e57fe 950c993 06e57fe 950c993 06e57fe c774338 1983ef1 c774338 843fee2 084159d 1983ef1 c774338 e742531 2217335 c8bd9ca e742531 c774338 e742531 2217335 06e57fe 2217335 e742531 2217335 e742531 033e5a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
import logging
import os
import requests
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
from openai import OpenAI
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
class RAG:
NO_ANSWER_MESSAGE: str = "Ho sento, no he pogut respondre la teva pregunta."
#vectorstore = "index-intfloat_multilingual-e5-small-500-100-CA-ES" # mixed
#vectorstore = "vectorestore" # CA only
vectorstore = "index-BAAI_bge-m3-1500-200-recursive_splitter-CA_ES_UE"
def __init__(self, hf_token, embeddings_model, model_name, rerank_model, rerank_number_contexts):
self.model_name = model_name
self.hf_token = hf_token
self.rerank_model = rerank_model
self.rerank_number_contexts = rerank_number_contexts
# load vectore store
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model, model_kwargs={'device': 'cpu'})
self.vectore_store = FAISS.load_local(self.vectorstore, embeddings, allow_dangerous_deserialization=True)#, allow_dangerous_deserialization=True)
logging.info("RAG loaded!")
def rerank_contexts(self, instruction, contexts, number_of_contexts=1):
"""
Rerank the contexts based on their relevance to the given instruction.
"""
rerank_model = self.rerank_model
tokenizer = AutoTokenizer.from_pretrained(rerank_model)
model = AutoModelForSequenceClassification.from_pretrained(rerank_model)
def get_score(query, passage):
"""Calculate the relevance score of a passage with respect to a query."""
inputs = tokenizer(query, passage, return_tensors='pt', truncation=True, padding=True, max_length=512)
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
score = logits.view(-1, ).float()
return score
scores = [get_score(instruction, c[0].page_content) for c in contexts]
combined = list(zip(contexts, scores))
sorted_combined = sorted(combined, key=lambda x: x[1], reverse=True)
sorted_texts, _ = zip(*sorted_combined)
return sorted_texts[:number_of_contexts]
def get_context(self, instruction, number_of_contexts=2):
"""Retrieve the most relevant contexts for a given instruction."""
documentos = self.vectore_store.similarity_search_with_score(instruction, k=self.rerank_number_contexts)
documentos = self.rerank_contexts(instruction, documentos, number_of_contexts=number_of_contexts)
print("Reranked documents")
return documentos
def predict_dolly(self, instruction, context, model_parameters):
api_key = os.getenv("HF_TOKEN")
headers = {
"Accept" : "application/json",
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
query = f"### Instruction\n{instruction}\n\n### Context\n{context}\n\n### Answer\n "
#prompt = "You are a helpful assistant. Answer the question using only the context you are provided with. If it is not possible to do it with the context, just say 'I can't answer'. <|endoftext|>"
payload = {
"inputs": query,
"parameters": model_parameters
}
response = requests.post(self.model_name, headers=headers, json=payload)
return response.json()[0]["generated_text"].split("###")[-1][8:]
def predict_completion(self, instruction, context, model_parameters):
client = OpenAI(
base_url=os.getenv("MODEL"),
api_key=os.getenv("HF_TOKEN")
)
query = f"Context:\n{context}\n\nQuestion:\n{instruction}"
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "user", "content": instruction}
],
temperature=model_parameters["temperature"],
max_tokens=model_parameters["max_new_tokens"],
stream=False,
stop=["<|im_end|>"],
extra_body = {
"presence_penalty": model_parameters["repetition_penalty"] - 2,
"do_sample": False
}
)
response = chat_completion.choices[0].message.content
return response
def beautiful_context(self, docs):
text_context = ""
full_context = ""
source_context = []
for doc in docs:
text_context += doc[0].page_content
full_context += doc[0].page_content + "\n"
full_context += doc[0].metadata["Títol de la norma"] + "\n\n"
full_context += doc[0].metadata["url"] + "\n\n"
source_context.append(doc[0].metadata["url"])
return text_context, full_context, source_context
def get_response(self, prompt: str, model_parameters: dict) -> str:
try:
docs = self.get_context(prompt, model_parameters["NUM_CHUNKS"])
text_context, full_context, source = self.beautiful_context(docs)
del model_parameters["NUM_CHUNKS"]
response = self.predict_completion(prompt, text_context, model_parameters)
if not response:
return self.NO_ANSWER_MESSAGE
return response, full_context, source
except Exception as err:
print(err)
|