Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import os | |
import gradio as gr | |
from gradio.components import Textbox, Button | |
# from AinaTheme import theme | |
from urllib.error import HTTPError | |
from rag import RAG | |
from utils import setup | |
setup() | |
rag = RAG( | |
hf_token=os.getenv("HF_TOKEN"), | |
embeddings_model=os.getenv("EMBEDDINGS"), | |
model_name=os.getenv("MODEL"), | |
) | |
def generate(prompt): | |
try: | |
output = rag.get_response(prompt) | |
return output | |
except HTTPError as err: | |
if err.code == 400: | |
gr.Warning( | |
"The inference endpoint is only available Monday through Friday, from 08:00 to 20:00 CET." | |
) | |
except: | |
gr.Warning( | |
"Inference endpoint is not available right now. Please try again later." | |
) | |
def submit_input(input_): | |
if input_.strip() == "": | |
gr.Warning("Not possible to inference an empty input") | |
return None | |
output = generate(input_) | |
return output | |
def change_interactive(text): | |
if len(text) == 0: | |
return gr.update(interactive=True), gr.update(interactive=False) | |
return gr.update(interactive=True), gr.update(interactive=True) | |
def clear(): | |
return ( | |
None, | |
None, | |
) | |
def gradio_app(): | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(scale=0.1): | |
gr.Image("rag_image.jpg", elem_id="flor-banner", scale=1, height=256, width=256, show_label=False, show_download_button = False, show_share_button = False) | |
with gr.Column(): | |
gr.Markdown( | |
"""# Retrieval-Augmented Generation (experimental) | |
🔍 **Retrieval-Augmented Generation** (RAG) is an AI framework for improving the quality of LLM-generated responses | |
by grounding the model on external sources of knowledge to supplement the LLM's internal representation of | |
information. Implementing RAG in an LLM-based question answering system has two main benefits: It ensures | |
that the model has access to the most current, reliable facts, and that users have access to the model's | |
sources, ensuring that the information can be checked for accuracy and ultimately trusted. | |
🎯 **Purpose:** The main purpose of this RAG is answering questions related to the [AI ACT](https://artificialintelligenceact.eu/wp-content/uploads/2024/01/AI-Act-FullText.pdf). | |
By incorporating external knowledge sources, RAG enables the LLM to provide more informed and reliable | |
responses specifically tailored to inquiries about it. | |
⚠️ **Limitations**: This version is for beta testing only. The content generated by these models is unsupervised | |
and might be wrong. Please bear this in mind when exploring this resource. | |
""" | |
) | |
with gr.Row(equal_height=True): | |
with gr.Column(variant="panel"): | |
input_ = Textbox( | |
lines=11, | |
label="Input", | |
placeholder="e.g. What is the AI Act?", | |
# value = "Quina és la finalitat del Servei Meteorològic de Catalunya?" | |
) | |
with gr.Column(variant="panel"): | |
output = Textbox( | |
lines=11, label="Output", interactive=False, show_copy_button=True | |
) | |
with gr.Row(variant="panel"): | |
clear_btn = Button( | |
"Clear", | |
) | |
submit_btn = Button("Submit", variant="primary", interactive=False) | |
input_.change( | |
fn=change_interactive, | |
inputs=[input_], | |
outputs=[clear_btn, submit_btn], | |
api_name=False, | |
) | |
input_.change( | |
fn=None, | |
inputs=[input_], | |
api_name=False, | |
js="""(i, m) => { | |
document.getElementById('inputlenght').textContent = i.length + ' ' | |
document.getElementById('inputlenght').style.color = (i.length > m) ? "#ef4444" : ""; | |
}""", | |
) | |
clear_btn.click( | |
fn=clear, inputs=[], outputs=[input_, output], queue=False, api_name=False | |
) | |
submit_btn.click( | |
fn=submit_input, inputs=[input_], outputs=[output], api_name="get-results" | |
) | |
demo.launch(show_api=True) | |
if __name__ == "__main__": | |
gradio_app() |