update HF hub paths
Browse files- Dockerfile +2 -2
- infer_onnx.py +5 -4
Dockerfile
CHANGED
@@ -42,9 +42,9 @@ RUN pip install -r requirements.txt
|
|
42 |
|
43 |
RUN huggingface-cli download BSC-LT/matcha-tts-cat-onnx matcha_multispeaker_cat_opset_15_10_steps_lastwords.onnx --local-dir $HOME/app/
|
44 |
|
45 |
-
RUN huggingface-cli download BSC-LT/vocos-mel-22khz-
|
46 |
|
47 |
-
RUN huggingface-cli download BSC-LT/vocos-mel-22khz-
|
48 |
|
49 |
COPY --chown=user . $HOME/app/
|
50 |
|
|
|
42 |
|
43 |
RUN huggingface-cli download BSC-LT/matcha-tts-cat-onnx matcha_multispeaker_cat_opset_15_10_steps_lastwords.onnx --local-dir $HOME/app/
|
44 |
|
45 |
+
RUN huggingface-cli download BSC-LT/vocos-mel-22khz-cat mel_spec_22khz_cat.onnx --local-dir $HOME/app/
|
46 |
|
47 |
+
RUN huggingface-cli download BSC-LT/vocos-mel-22khz-cat config.yaml --local-dir $HOME/app/
|
48 |
|
49 |
COPY --chown=user . $HOME/app/
|
50 |
|
infer_onnx.py
CHANGED
@@ -32,7 +32,7 @@ def process_text(i: int, text: str, device: torch.device):
|
|
32 |
|
33 |
MODEL_PATH_MATCHA_MEL="matcha_multispeaker_cat_opset_15_10_steps_lastwords.onnx"
|
34 |
MODEL_PATH_MATCHA="matcha_hifigan_multispeaker_cat.onnx"
|
35 |
-
MODEL_PATH_VOCOS="
|
36 |
CONFIG_PATH="config.yaml"
|
37 |
SPEAKER_ID_DICT="spk_to_id.json"
|
38 |
|
@@ -183,12 +183,13 @@ description = """
|
|
183 |
|
184 |
π΅ Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses conditional flow matching (similar to rectified flows) to speed up ODE-based speech synthesis
|
185 |
|
186 |
-
For vocoders we use
|
|
|
|
|
187 |
|
188 |
-
Matcha was trained using openslr69 and festcat datasets
|
189 |
"""
|
190 |
|
191 |
-
article = "Training and demo by
|
192 |
|
193 |
vits2_inference = gr.Interface(
|
194 |
fn=tts,
|
|
|
32 |
|
33 |
MODEL_PATH_MATCHA_MEL="matcha_multispeaker_cat_opset_15_10_steps_lastwords.onnx"
|
34 |
MODEL_PATH_MATCHA="matcha_hifigan_multispeaker_cat.onnx"
|
35 |
+
MODEL_PATH_VOCOS="mel_spec_22khz_cat.onnx"
|
36 |
CONFIG_PATH="config.yaml"
|
37 |
SPEAKER_ID_DICT="spk_to_id.json"
|
38 |
|
|
|
183 |
|
184 |
π΅ Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses conditional flow matching (similar to rectified flows) to speed up ODE-based speech synthesis
|
185 |
|
186 |
+
For vocoders we use [Vocos](https://huggingface.co/BSC-LT/vocos-mel-22khz-cat) trained in a catalan set of ~28 hours.
|
187 |
+
|
188 |
+
[Matcha](https://huggingface.co/BSC-LT/matcha-tts-cat-onnx) was trained using openslr69 and festcat datasets
|
189 |
|
|
|
190 |
"""
|
191 |
|
192 |
+
article = "Training and demo by The Language Technologies Unit from Barcelona Supercomputing Center."
|
193 |
|
194 |
vits2_inference = gr.Interface(
|
195 |
fn=tts,
|