add inference app
Browse files- infer_onnx.py +180 -0
infer_onnx.py
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import onnxruntime
|
3 |
+
|
4 |
+
import utils
|
5 |
+
from text import text_to_sequence, sequence_to_text
|
6 |
+
import torch
|
7 |
+
import gradio as gr
|
8 |
+
import soundfile as sf
|
9 |
+
import tempfile
|
10 |
+
import yaml
|
11 |
+
|
12 |
+
def intersperse(lst, item):
|
13 |
+
result = [item] * (len(lst) * 2 + 1)
|
14 |
+
result[1::2] = lst
|
15 |
+
return result
|
16 |
+
|
17 |
+
|
18 |
+
def process_text(i: int, text: str, device: torch.device):
|
19 |
+
print(f"[{i}] - Input text: {text}")
|
20 |
+
x = torch.tensor(
|
21 |
+
intersperse(text_to_sequence(text, ["catalan_cleaners"]), 0),
|
22 |
+
dtype=torch.long,
|
23 |
+
device=device,
|
24 |
+
)[None]
|
25 |
+
x_lengths = torch.tensor([x.shape[-1]], dtype=torch.long, device=device)
|
26 |
+
x_phones = sequence_to_text(x.squeeze(0).tolist())
|
27 |
+
print(x_phones)
|
28 |
+
return x.numpy(), x_lengths.numpy()
|
29 |
+
|
30 |
+
MODEL_PATH_MATCHA_MEL="matcha_multispeaker_cat_opset_15.onnx"
|
31 |
+
MODEL_PATH_MATCHA="matcha_hifigan_multispeaker_cat.onnx"
|
32 |
+
MODEL_PATH_VOCOS="mel_spec_22khz.onnx"
|
33 |
+
CONFIG_PATH="/home/jgiraldo/projects/tts-onnx-comparison/config_22khz.yaml"
|
34 |
+
|
35 |
+
sess_options = onnxruntime.SessionOptions()
|
36 |
+
model_matcha_mel= onnxruntime.InferenceSession(str(MODEL_PATH_MATCHA_MEL), sess_options=sess_options, providers=["CPUExecutionProvider"])
|
37 |
+
model_vocos = onnxruntime.InferenceSession(str(MODEL_PATH_VOCOS), sess_options=sess_options, providers=["CPUExecutionProvider"])
|
38 |
+
model_matcha = onnxruntime.InferenceSession(str(MODEL_PATH_MATCHA), sess_options=sess_options, providers=["CPUExecutionProvider"])
|
39 |
+
|
40 |
+
def vocos_inference(mel: torch.Tensor, config):
|
41 |
+
|
42 |
+
with open(CONFIG_PATH, "r") as f:
|
43 |
+
config = yaml.safe_load(f)
|
44 |
+
|
45 |
+
params = config["feature_extractor"]["init_args"]
|
46 |
+
sample_rate = params["sample_rate"]
|
47 |
+
n_fft= params["n_fft"]
|
48 |
+
hop_length= params["hop_length"]
|
49 |
+
win_length = n_fft
|
50 |
+
|
51 |
+
# ONNX inference
|
52 |
+
mag, x, y = model_vocos.run(
|
53 |
+
None,
|
54 |
+
{
|
55 |
+
"mels": mel.float().numpy()
|
56 |
+
},
|
57 |
+
)
|
58 |
+
|
59 |
+
# complex spectrogram from vocos output
|
60 |
+
spectrogram = mag * (x + 1j * y)
|
61 |
+
window = torch.hann_window(win_length)
|
62 |
+
|
63 |
+
# Inverse stft
|
64 |
+
pad = (win_length - hop_length) // 2
|
65 |
+
spectrogram = torch.tensor(spectrogram)
|
66 |
+
B, N, T = spectrogram.shape
|
67 |
+
|
68 |
+
print("Spectrogram synthesized shape", spectrogram.shape)
|
69 |
+
# Inverse FFT
|
70 |
+
ifft = torch.fft.irfft(spectrogram, n_fft, dim=1, norm="backward")
|
71 |
+
ifft = ifft * window[None, :, None]
|
72 |
+
|
73 |
+
# Overlap and Add
|
74 |
+
output_size = (T - 1) * hop_length + win_length
|
75 |
+
y = torch.nn.functional.fold(
|
76 |
+
ifft, output_size=(1, output_size), kernel_size=(1, win_length), stride=(1, hop_length),
|
77 |
+
)[:, 0, 0, pad:-pad]
|
78 |
+
|
79 |
+
# Window envelope
|
80 |
+
window_sq = window.square().expand(1, T, -1).transpose(1, 2)
|
81 |
+
window_envelope = torch.nn.functional.fold(
|
82 |
+
window_sq, output_size=(1, output_size), kernel_size=(1, win_length), stride=(1, hop_length),
|
83 |
+
).squeeze()[pad:-pad]
|
84 |
+
|
85 |
+
# Normalize
|
86 |
+
assert (window_envelope > 1e-11).all()
|
87 |
+
y = y / window_envelope
|
88 |
+
|
89 |
+
return y
|
90 |
+
|
91 |
+
def tts(text:str, spk_id:int):
|
92 |
+
sid = np.array([int(spk_id)]) if spk_id is not None else None
|
93 |
+
text_matcha , text_lengths = process_text(0,text,"cpu")
|
94 |
+
|
95 |
+
# MATCHA VOCOS
|
96 |
+
inputs = {
|
97 |
+
"x": text_matcha,
|
98 |
+
"x_lengths": text_lengths,
|
99 |
+
"scales": np.array([0.667, 1.0], dtype=np.float32),
|
100 |
+
"spks": sid
|
101 |
+
}
|
102 |
+
|
103 |
+
mel, mel_lengths = model_matcha_mel.run(None, inputs)
|
104 |
+
# vocos inference
|
105 |
+
wavs_vocos = vocos_inference(mel, CONFIG_PATH)
|
106 |
+
|
107 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp_matcha_vocos:
|
108 |
+
sf.write(fp_matcha_vocos.name, wavs_vocos.squeeze(0), 22050, "PCM_24")
|
109 |
+
|
110 |
+
#MATCHA HIFIGAN
|
111 |
+
|
112 |
+
inputs = {
|
113 |
+
"x": text_matcha,
|
114 |
+
"x_lengths": text_lengths,
|
115 |
+
"scales": np.array([0.667, 1.0], dtype=np.float32),
|
116 |
+
"spks": sid
|
117 |
+
}
|
118 |
+
wavs, wav_lengths = model_matcha.run(None, inputs)
|
119 |
+
|
120 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp_matcha:
|
121 |
+
sf.write(fp_matcha.name, wavs.squeeze(0), 22050, "PCM_24")
|
122 |
+
|
123 |
+
return fp_matcha_vocos.name, fp_matcha.name
|
124 |
+
|
125 |
+
## GUI space
|
126 |
+
|
127 |
+
title = """
|
128 |
+
<div style="text-align: center; max-width: 700px; margin: 0 auto;">
|
129 |
+
<div
|
130 |
+
style="display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem;"
|
131 |
+
> <h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;">
|
132 |
+
TTS Catalan Comparison
|
133 |
+
</h1> </div>
|
134 |
+
</div>
|
135 |
+
"""
|
136 |
+
|
137 |
+
description = """
|
138 |
+
VITS2 is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. VITS2 improved the
|
139 |
+
training and inference efficiency and naturalness by introducing adversarial learning into the duration predictor. The transformer
|
140 |
+
block was added to the normalizing flows to capture the long-term dependency when transforming the distribution.
|
141 |
+
The synthesis quality was improved by incorporating Gaussian noise into the alignment search.
|
142 |
+
|
143 |
+
🍵 Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses conditional flow matching (similar to rectified flows) to speed up ODE-based speech synthesis
|
144 |
+
|
145 |
+
Models are being trained in openslr69 and festcat datasets
|
146 |
+
"""
|
147 |
+
|
148 |
+
article = "Training and demo by BSC."
|
149 |
+
|
150 |
+
vits2_inference = gr.Interface(
|
151 |
+
fn=tts,
|
152 |
+
inputs=[
|
153 |
+
gr.Textbox(
|
154 |
+
value="m'ha costat desenvolupar molt una veu, i ara que la tinc no estaré en silenci.",
|
155 |
+
max_lines=1,
|
156 |
+
label="Input text",
|
157 |
+
),
|
158 |
+
gr.Slider(
|
159 |
+
1,
|
160 |
+
47,
|
161 |
+
value=10,
|
162 |
+
step=1,
|
163 |
+
label="Speaker id",
|
164 |
+
info=f"Models are trained on 47 speakers. You can prompt the model using one of these speaker ids.",
|
165 |
+
),
|
166 |
+
],
|
167 |
+
outputs=[gr.Audio(label="Matcha vocos", interactive=False, type="filepath"),
|
168 |
+
gr.Audio(label="Matcha", interactive=False, type="filepath")]
|
169 |
+
)
|
170 |
+
|
171 |
+
demo = gr.Blocks()
|
172 |
+
|
173 |
+
with demo:
|
174 |
+
gr.Markdown(title)
|
175 |
+
gr.Markdown(description)
|
176 |
+
gr.TabbedInterface([vits2_inference], ["Multispeaker"])
|
177 |
+
gr.Markdown(article)
|
178 |
+
|
179 |
+
demo.queue(max_size=10)
|
180 |
+
demo.launch(show_api=False, server_name="0.0.0.0", server_port=7860)
|