import numpy as np import onnxruntime from text import text_to_sequence, sequence_to_text import torch import gradio as gr import soundfile as sf import tempfile import yaml import json import os from huggingface_hub import hf_hub_download from time import perf_counter DEFAULT_SPEAKER_ID = os.environ.get("DEFAULT_SPEAKER_ID", default="caf_08106") def intersperse(lst, item): result = [item] * (len(lst) * 2 + 1) result[1::2] = lst return result def process_text(i: int, text: str, device: torch.device): print(f"[{i}] - Input text: {text}") x = torch.tensor( intersperse(text_to_sequence(text, ["catalan_cleaners"]), 0), dtype=torch.long, device=device, )[None] x_lengths = torch.tensor([x.shape[-1]], dtype=torch.long, device=device) x_phones = sequence_to_text(x.squeeze(0).tolist()) print(x_phones) return x.numpy(), x_lengths.numpy() MODEL_PATH_MATCHA_MEL=hf_hub_download(repo_id="BSC-LT/matcha-tts-cat-multispeaker", filename="matcha_multispeaker_cat_opset_15_10_steps_2399.onnx") MODEL_PATH_MATCHA="matcha_hifigan_multispeaker_cat.onnx" MODEL_PATH_VOCOS=hf_hub_download(repo_id="BSC-LT/vocos-mel-22khz-cat", filename="mel_spec_22khz_cat.onnx") CONFIG_PATH=hf_hub_download(repo_id="BSC-LT/vocos-mel-22khz-cat", filename="config.yaml") SPEAKER_ID_DICT="spk_to_id.json" sess_options = onnxruntime.SessionOptions() model_matcha_mel= onnxruntime.InferenceSession(str(MODEL_PATH_MATCHA_MEL), sess_options=sess_options, providers=["CPUExecutionProvider"]) model_vocos = onnxruntime.InferenceSession(str(MODEL_PATH_VOCOS), sess_options=sess_options, providers=["CPUExecutionProvider"]) #model_matcha = onnxruntime.InferenceSession(str(MODEL_PATH_MATCHA), sess_options=sess_options, providers=["CPUExecutionProvider"]) speaker_id_dict = json.load(open(SPEAKER_ID_DICT)) speakers = [sp for sp in speaker_id_dict.keys()] speakers.sort() def vocos_inference(mel,denoise): with open(CONFIG_PATH, "r") as f: config = yaml.safe_load(f) params = config["feature_extractor"]["init_args"] sample_rate = params["sample_rate"] n_fft= params["n_fft"] hop_length= params["hop_length"] win_length = n_fft # ONNX inference mag, x, y = model_vocos.run( None, { "mels": mel }, ) # complex spectrogram from vocos output spectrogram = mag * (x + 1j * y) window = torch.hann_window(win_length) if denoise: # Vocoder bias mel_rand = torch.zeros_like(torch.tensor(mel)) mag_bias, x_bias, y_bias = model_vocos.run( None, { "mels": mel_rand.float().numpy() }, ) # complex spectrogram from vocos output spectrogram_bias = mag_bias * (x_bias + 1j * y_bias) # Denoising spec = torch.view_as_real(torch.tensor(spectrogram)) # get magnitude of vocos spectrogram mag_spec = torch.sqrt(spec.pow(2).sum(-1)) # get magnitude of bias spectrogram spec_bias = torch.view_as_real(torch.tensor(spectrogram_bias)) mag_spec_bias = torch.sqrt(spec_bias.pow(2).sum(-1)) # substract strength = 0.0025 mag_spec_denoised = mag_spec - mag_spec_bias * strength mag_spec_denoised = torch.clamp(mag_spec_denoised, 0.0) # return to complex spectrogram from magnitude angle = torch.atan2(spec[..., -1], spec[..., 0] ) spectrogram = torch.complex(mag_spec_denoised * torch.cos(angle), mag_spec_denoised * torch.sin(angle)) # Inverse stft pad = (win_length - hop_length) // 2 spectrogram = torch.tensor(spectrogram) B, N, T = spectrogram.shape print("Spectrogram synthesized shape", spectrogram.shape) # Inverse FFT ifft = torch.fft.irfft(spectrogram, n_fft, dim=1, norm="backward") ifft = ifft * window[None, :, None] # Overlap and Add output_size = (T - 1) * hop_length + win_length y = torch.nn.functional.fold( ifft, output_size=(1, output_size), kernel_size=(1, win_length), stride=(1, hop_length), )[:, 0, 0, pad:-pad] # Window envelope window_sq = window.square().expand(1, T, -1).transpose(1, 2) window_envelope = torch.nn.functional.fold( window_sq, output_size=(1, output_size), kernel_size=(1, win_length), stride=(1, hop_length), ).squeeze()[pad:-pad] # Normalize assert (window_envelope > 1e-11).all() y = y / window_envelope return y def tts(text:str, spk_name:str, temperature:float, length_scale:float, denoise:bool): spk_id = speaker_id_dict[spk_name] sid = np.array([int(spk_id)]) if spk_id is not None else None text_matcha , text_lengths = process_text(0,text,"cpu") # MATCHA VOCOS inputs = { "x": text_matcha, "x_lengths": text_lengths, "scales": np.array([temperature, length_scale], dtype=np.float32), "spks": sid } mel_t0 = perf_counter() # matcha mel inference mel, mel_lengths = model_matcha_mel.run(None, inputs) mel_infer_secs = perf_counter() - mel_t0 print("Matcha Mel inference time", mel_infer_secs) vocos_t0 = perf_counter() # vocos inference wavs_vocos = vocos_inference(mel,denoise) vocos_infer_secs = perf_counter() - vocos_t0 print("Vocos inference time", vocos_infer_secs) with tempfile.NamedTemporaryFile(suffix=".wav", delete=False, dir="/home/user/app") as fp_matcha_vocos: sf.write(fp_matcha_vocos.name, wavs_vocos.squeeze(0), 22050, "PCM_24") #MATCHA HIFIGAN inputs = { "x": text_matcha, "x_lengths": text_lengths, "scales": np.array([temperature, length_scale], dtype=np.float32), "spks": sid } hifigan_t0 = perf_counter() print(f"RTF matcha + vocos { (mel_infer_secs + vocos_infer_secs) / (wavs_vocos.shape[1]/22050) }") return fp_matcha_vocos.name ## GUI space title = """

Natural and efficient TTS in Catalan

""" description = """ 🍵 Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses conditional flow matching (similar to rectified flows) to speed up ODE-based speech synthesis For vocoders we use [Vocos](https://huggingface.co/BSC-LT/vocos-mel-22khz-cat) trained in a catalan set of ~28 hours. [Matcha](https://huggingface.co/BSC-LT/matcha-tts-cat-onnx) was trained using openslr69 and festcat datasets """ about = """ ## 📄 About The TTS test about. ## Samples
Col1 Col2 Col3
""" article = "Training and demo by The Language Technologies Unit from Barcelona Supercomputing Center." vits2_inference = gr.Interface( fn=tts, inputs=[ gr.Textbox( value="m'ha costat molt desenvolupar una veu, i ara que la tinc no estaré en silenci.", max_lines=1, label="Input text", ), gr.Dropdown( choices=speakers, label="Speaker id", value=DEFAULT_SPEAKER_ID, info=f"Models are trained on 47 speakers. You can prompt the model using one of these speaker ids." ), gr.Slider( 0.1, 2.0, value=0.667, step=0.01, label="Temperature", info=f"Temperature", ), gr.Slider( 0.5, 2.0, value=1.0, step=0.01, label="Length scale", info=f"Controls speech pace, larger values for slower pace and smaller values for faster pace", ), gr.Checkbox(label="Denoise", info="Removes model bias from vocos", value=True), ], outputs=[gr.Audio(label="Matcha vocos", interactive=False, type="filepath")] ) about_article = gr.Markdown(about) demo = gr.Blocks() with demo: gr.Markdown(title) gr.Markdown(description) gr.TabbedInterface([vits2_inference, about_article], ["Demo", "About"]) gr.Markdown(article) demo.queue(max_size=10) demo.launch(show_api=False, server_name="0.0.0.0", server_port=7860)