File size: 8,315 Bytes
417ac9a 7780fae 417ac9a 0ccf7ba 417ac9a aaf32c1 417ac9a b9c467d 417ac9a b9c467d 417ac9a aaf32c1 b9c467d aaf32c1 417ac9a 0ccf7ba 417ac9a aaf32c1 417ac9a 0ccf7ba 417ac9a 6aa9546 417ac9a 6aa9546 417ac9a 6aa9546 417ac9a 6aa9546 0ccf7ba 6aa9546 417ac9a b9c467d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import argparse
import glob
import json
import logging
import multiprocessing as mp
import os
import time
import uuid
from datetime import timedelta
from functools import lru_cache
from typing import List, Union
import aegis
import gradio as gr
import requests
from huggingface_hub import HfApi
from optimum.onnxruntime import ORTModelForSequenceClassification
from rebuff import Rebuff
from transformers import AutoTokenizer, pipeline
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
hf_api = HfApi(token=os.getenv("HF_TOKEN"))
num_processes = 2 # mp.cpu_count()
lakera_api_key = os.getenv("LAKERA_API_KEY")
automorphic_api_key = os.getenv("AUTOMORPHIC_API_KEY")
rebuff_api_key = os.getenv("REBUFF_API_KEY")
azure_content_safety_endpoint = os.getenv("AZURE_CONTENT_SAFETY_ENDPOINT")
azure_content_safety_key = os.getenv("AZURE_CONTENT_SAFETY_KEY")
@lru_cache(maxsize=2)
def init_prompt_injection_model(prompt_injection_ort_model: str, subfolder: str = "") -> pipeline:
hf_model = ORTModelForSequenceClassification.from_pretrained(
prompt_injection_ort_model,
export=False,
subfolder=subfolder,
)
hf_tokenizer = AutoTokenizer.from_pretrained(prompt_injection_ort_model, subfolder=subfolder)
hf_tokenizer.model_input_names = ["input_ids", "attention_mask"]
logger.info(f"Initialized classification ONNX model {prompt_injection_ort_model} on CPU")
return pipeline(
"text-classification",
model=hf_model,
tokenizer=hf_tokenizer,
device="cpu",
batch_size=1,
truncation=True,
max_length=512,
)
def convert_elapsed_time(diff_time) -> float:
return round(timedelta(seconds=diff_time).total_seconds(), 2)
deepset_classifier = init_prompt_injection_model(
"laiyer/deberta-v3-base-injection-onnx"
) # ONNX version of deepset/deberta-v3-base-injection
laiyer_classifier = init_prompt_injection_model("laiyer/deberta-v3-base-prompt-injection", "onnx")
fmops_classifier = init_prompt_injection_model(
"laiyer/fmops-distilbert-prompt-injection-onnx"
) # ONNX version of fmops/distilbert-prompt-injection
def detect_hf(
prompt: str, threshold: float = 0.5, classifier=laiyer_classifier, label: str = "INJECTION"
) -> (bool, bool):
try:
pi_result = classifier(prompt)
injection_score = round(
pi_result[0]["score"] if pi_result[0]["label"] == label else 1 - pi_result[0]["score"],
2,
)
logger.info(f"Prompt injection result from the HF model: {pi_result}")
return True, injection_score > threshold
except Exception as err:
logger.error(f"Failed to call HF model: {err}")
return False, False
def detect_hf_laiyer(prompt: str) -> (bool, bool):
return detect_hf(prompt, classifier=laiyer_classifier)
def detect_hf_deepset(prompt: str) -> (bool, bool):
return detect_hf(prompt, classifier=deepset_classifier)
def detect_hf_fmops(prompt: str) -> (bool, bool):
return detect_hf(prompt, classifier=fmops_classifier, label="LABEL_1")
def detect_lakera(prompt: str) -> (bool, bool):
try:
response = requests.post(
"https://api.lakera.ai/v1/prompt_injection",
json={"input": prompt},
headers={"Authorization": f"Bearer {lakera_api_key}"},
)
response_json = response.json()
logger.info(f"Prompt injection result from Lakera: {response.json()}")
return True, response_json["results"][0]["flagged"]
except requests.RequestException as err:
logger.error(f"Failed to call Lakera API: {err}")
return False, False
def detect_automorphic(prompt: str) -> (bool, bool):
ag = aegis.Aegis(automorphic_api_key)
try:
ingress_attack_detected = ag.ingress(prompt, "")
logger.info(f"Prompt injection result from Automorphic: {ingress_attack_detected}")
return True, ingress_attack_detected["detected"]
except Exception as err:
logger.error(f"Failed to call Automorphic API: {err}")
return False, False # Assume it's not attack
def detect_rebuff(prompt: str) -> (bool, bool):
try:
rb = Rebuff(api_token=rebuff_api_key, api_url="https://www.rebuff.ai")
result = rb.detect_injection(prompt)
logger.info(f"Prompt injection result from Rebuff: {result}")
return True, result.injectionDetected
except Exception as err:
logger.error(f"Failed to call Rebuff API: {err}")
return False, False
def detect_azure(prompt: str) -> (bool, bool):
try:
response = requests.post(
f"{azure_content_safety_endpoint}contentsafety/text:detectJailbreak?api-version=2023-10-15-preview",
json={"text": prompt},
headers={"Ocp-Apim-Subscription-Key": azure_content_safety_key},
)
response_json = response.json()
logger.info(f"Prompt injection result from Azure: {response.json()}")
return True, response_json["jailbreakAnalysis"]["detected"]
except requests.RequestException as err:
logger.error(f"Failed to call Azure API: {err}")
return False, False
detection_providers = {
"Laiyer (HF model)": detect_hf_laiyer,
"Deepset (HF model)": detect_hf_deepset,
"FMOps (HF model)": detect_hf_fmops,
"Lakera Guard": detect_lakera,
"Automorphic Aegis": detect_automorphic,
"Rebuff": detect_rebuff,
"Azure Content Safety": detect_azure,
}
def is_detected(provider: str, prompt: str) -> (str, bool, bool, float):
if provider not in detection_providers:
logger.warning(f"Provider {provider} is not supported")
return False, 0.0
start_time = time.monotonic()
request_result, is_injection = detection_providers[provider](prompt)
end_time = time.monotonic()
return provider, request_result, is_injection, convert_elapsed_time(end_time - start_time)
def execute(prompt: str) -> List[Union[str, bool, float]]:
results = []
with mp.Pool(processes=num_processes) as pool:
for result in pool.starmap(
is_detected, [(provider, prompt) for provider in detection_providers.keys()]
):
results.append(result)
# Save image and result
fileobj = json.dumps(
{"prompt": prompt, "results": results}, indent=2, ensure_ascii=False
).encode("utf-8")
result_path = f"/prompts/train/{str(uuid.uuid4())}.json"
hf_api.upload_file(
path_or_fileobj=fileobj,
path_in_repo=result_path,
repo_id="laiyer/prompt-injection-benchmark",
repo_type="dataset",
)
logger.info(f"Stored prompt: {prompt}")
return results
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--port", type=int, default=7860)
parser.add_argument("--url", type=str, default="0.0.0.0")
args, left_argv = parser.parse_known_args()
example_files = glob.glob(os.path.join(os.path.dirname(__file__), "examples", "*.txt"))
examples = [open(file).read() for file in example_files]
gr.Interface(
fn=execute,
inputs=[
gr.Textbox(label="Prompt"),
],
outputs=[
gr.Dataframe(
headers=[
"Provider",
"Is processed successfully?",
"Is prompt injection?",
"Latency (seconds)",
],
datatype=["str", "bool", "bool", "number"],
label="Results",
),
],
title="Prompt Injection Benchmark",
description="This interface aims to benchmark the prompt injection detection providers. "
"The results are <strong>stored in the private dataset</strong> for further analysis and improvements."
"<br /><br />"
"HuggingFace (HF) models are hosted on Spaces while other providers are called as APIs.<br /><br />"
"<b>Disclaimer</b>: This interface is for research purposes only.",
examples=[
[
example,
False,
]
for example in examples
],
cache_examples=True,
allow_flagging="never",
concurrency_limit=1,
).launch(server_name=args.url, server_port=args.port)
|