File size: 8,155 Bytes
417ac9a
 
 
 
 
 
 
 
 
 
 
 
0604028
417ac9a
 
 
 
 
 
 
 
 
6b80b1f
 
417ac9a
 
 
0ccf7ba
 
1a0ab69
417ac9a
 
 
 
 
6b80b1f
 
 
 
 
 
 
 
417ac9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b80b1f
417ac9a
d886d80
6b80b1f
d886d80
417ac9a
 
b9c467d
e8cf854
 
 
 
b9c467d
417ac9a
 
 
b9c467d
417ac9a
 
 
 
 
 
 
 
 
 
 
d886d80
 
417ac9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ccf7ba
 
 
1a0ab69
 
0ccf7ba
 
 
 
 
1a0ab69
e0e24fd
 
1a0ab69
0ccf7ba
 
 
 
 
1a0ab69
 
805526f
1a0ab69
 
 
 
 
 
 
7fcadc1
 
 
0604028
7fcadc1
0604028
 
417ac9a
d886d80
417ac9a
 
0ccf7ba
4d0fb15
417ac9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6aa9546
417ac9a
 
 
 
 
 
 
 
 
6aa9546
 
 
 
 
 
 
 
805526f
6aa9546
 
 
417ac9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6aa9546
417ac9a
 
 
 
 
 
 
7b82ab9
 
 
0ccf7ba
6aa9546
0604028
 
417ac9a
 
 
 
 
 
 
 
 
b9c467d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import argparse
import glob
import json
import logging
import multiprocessing as mp
import os
import time
import uuid
from datetime import timedelta
from functools import lru_cache
from typing import List, Union

import boto3
import gradio as gr
import requests
from huggingface_hub import HfApi
from optimum.onnxruntime import ORTModelForSequenceClassification
from transformers import AutoTokenizer, pipeline

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

hf_token = os.getenv("HF_TOKEN")
hf_api = HfApi(token=hf_token)
num_processes = 2  # mp.cpu_count()

lakera_api_key = os.getenv("LAKERA_API_KEY")
azure_content_safety_endpoint = os.getenv("AZURE_CONTENT_SAFETY_ENDPOINT")
azure_content_safety_key = os.getenv("AZURE_CONTENT_SAFETY_KEY")
bedrock_runtime_client = boto3.client('bedrock-runtime', region_name="us-east-1")


@lru_cache(maxsize=2)
def init_prompt_injection_model(prompt_injection_ort_model: str, subfolder: str = "") -> pipeline:
    hf_model = ORTModelForSequenceClassification.from_pretrained(
        prompt_injection_ort_model,
        export=False,
        subfolder=subfolder,
        file_name="model.onnx",
        token=hf_token,
    )
    hf_tokenizer = AutoTokenizer.from_pretrained(
        prompt_injection_ort_model, subfolder=subfolder, token=hf_token
    )
    hf_tokenizer.model_input_names = ["input_ids", "attention_mask"]

    logger.info(f"Initialized classification ONNX model {prompt_injection_ort_model} on CPU")

    return pipeline(
        "text-classification",
        model=hf_model,
        tokenizer=hf_tokenizer,
        device="cpu",
        batch_size=1,
        truncation=True,
        max_length=512,
    )


def convert_elapsed_time(diff_time) -> float:
    return round(timedelta(seconds=diff_time).total_seconds(), 2)


deepset_classifier = init_prompt_injection_model(
    "protectai/deberta-v3-base-injection-onnx"
)  # ONNX version of deepset/deberta-v3-base-injection
protectai_v2_classifier = init_prompt_injection_model(
    "protectai/deberta-v3-base-prompt-injection-v2", "onnx"
)


def detect_hf(
    prompt: str,
    threshold: float = 0.5,
    classifier=protectai_v2_classifier,
    label: str = "INJECTION",
) -> (bool, bool):
    try:
        pi_result = classifier(prompt)
        injection_score = round(
            pi_result[0]["score"] if pi_result[0]["label"] == label else 1 - pi_result[0]["score"],
            2,
        )

        logger.info(f"Prompt injection result from the HF model: {pi_result}")

        return True, injection_score > threshold
    except Exception as err:
        logger.error(f"Failed to call HF model: {err}")
        return False, False


def detect_hf_protectai_v2(prompt: str) -> (bool, bool):
    return detect_hf(prompt, classifier=protectai_v2_classifier)


def detect_hf_deepset(prompt: str) -> (bool, bool):
    return detect_hf(prompt, classifier=deepset_classifier)


def detect_lakera(prompt: str) -> (bool, bool):
    try:
        response = requests.post(
            "https://api.lakera.ai/v1/prompt_injection",
            json={"input": prompt},
            headers={"Authorization": f"Bearer {lakera_api_key}"},
        )
        response_json = response.json()
        logger.info(f"Prompt injection result from Lakera: {response.json()}")

        return True, response_json["results"][0]["flagged"]
    except requests.RequestException as err:
        logger.error(f"Failed to call Lakera API: {err}")
        return False, False


def detect_azure(prompt: str) -> (bool, bool):
    try:
        response = requests.post(
            f"{azure_content_safety_endpoint}contentsafety/text:shieldPrompt?api-version=2024-02-15-preview",
            json={"userPrompt": prompt},
            headers={"Ocp-Apim-Subscription-Key": azure_content_safety_key},
        )
        response_json = response.json()
        logger.info(f"Prompt injection result from Azure: {response.json()}")

        if "userPromptAnalysis" not in response_json:
            return False, False

        return True, response_json["userPromptAnalysis"]["attackDetected"]
    except requests.RequestException as err:
        logger.error(f"Failed to call Azure API: {err}")
        return False, False


def detect_aws_bedrock(prompt: str) -> (bool, bool):
    response = bedrock_runtime_client.apply_guardrail(
        guardrailIdentifier="tx8t6psx14ho",
        guardrailVersion="1",
        source='INPUT',
        content=[
            {"text": {"text": prompt}}
        ])

    logger.info(f"Prompt injection result from AWS Bedrock Guardrails: {response}")
    if response["ResponseMetadata"]["HTTPStatusCode"] != 200:
        logger.error(f"Failed to call AWS Bedrock Guardrails API: {response}")
        return False, False

    return True, response['action'] != 'NONE'


detection_providers = {
    "ProtectAI v2 (HF model)": detect_hf_protectai_v2,
    "Deepset (HF model)": detect_hf_deepset,
    "Lakera Guard": detect_lakera,
    "Azure Content Safety": detect_azure,
    "AWS Bedrock Guardrails": detect_aws_bedrock,
}


def is_detected(provider: str, prompt: str) -> (str, bool, bool, float):
    if provider not in detection_providers:
        logger.warning(f"Provider {provider} is not supported")
        return False, 0.0

    start_time = time.monotonic()
    request_result, is_injection = detection_providers[provider](prompt)
    end_time = time.monotonic()

    return provider, request_result, is_injection, convert_elapsed_time(end_time - start_time)


def execute(prompt: str) -> List[Union[str, bool, float]]:
    results = []

    with mp.Pool(processes=num_processes) as pool:
        for result in pool.starmap(
            is_detected, [(provider, prompt) for provider in detection_providers.keys()]
        ):
            results.append(result)

    # Save image and result
    fileobj = json.dumps(
        {"prompt": prompt, "results": results}, indent=2, ensure_ascii=False
    ).encode("utf-8")
    result_path = f"/prompts/train/{str(uuid.uuid4())}.json"

    hf_api.upload_file(
        path_or_fileobj=fileobj,
        path_in_repo=result_path,
        repo_id="protectai/prompt-injection-benchmark",
        repo_type="dataset",
    )
    logger.info(f"Stored prompt: {prompt}")

    return results


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--port", type=int, default=7860)
    parser.add_argument("--url", type=str, default="0.0.0.0")
    args, left_argv = parser.parse_known_args()

    example_files = glob.glob(os.path.join(os.path.dirname(__file__), "examples", "*.txt"))
    examples = [open(file).read() for file in example_files]

    gr.Interface(
        fn=execute,
        inputs=[
            gr.Textbox(label="Prompt"),
        ],
        outputs=[
            gr.Dataframe(
                headers=[
                    "Provider",
                    "Is processed successfully?",
                    "Is prompt injection?",
                    "Latency (seconds)",
                ],
                datatype=["str", "bool", "bool", "number"],
                label="Results",
            ),
        ],
        title="Prompt Injection Solutions Benchmark",
        description="This interface aims to benchmark the known prompt injection detection providers. "
        "The results are <strong>stored in the private dataset</strong> for further analysis and improvements. This interface is for research purposes only."
        "<br /><br />"
        "HuggingFace (HF) models are hosted on Spaces while other providers are called as APIs.<br /><br />"
        '<a href="https://join.slack.com/t/laiyerai/shared_invite/zt-28jv3ci39-sVxXrLs3rQdaN3mIl9IT~w">Join our Slack community to discuss LLM Security</a><br />'
        '<a href="https://github.com/protectai/llm-guard">Secure your LLM interactions with LLM Guard</a>',
        examples=[
            [
                example,
                False,
            ]
            for example in examples
        ],
        cache_examples=True,
        allow_flagging="never",
        concurrency_limit=1,
    ).launch(server_name=args.url, server_port=args.port)