File size: 8,155 Bytes
417ac9a 0604028 417ac9a 6b80b1f 417ac9a 0ccf7ba 1a0ab69 417ac9a 6b80b1f 417ac9a 6b80b1f 417ac9a d886d80 6b80b1f d886d80 417ac9a b9c467d e8cf854 b9c467d 417ac9a b9c467d 417ac9a d886d80 417ac9a 0ccf7ba 1a0ab69 0ccf7ba 1a0ab69 e0e24fd 1a0ab69 0ccf7ba 1a0ab69 805526f 1a0ab69 7fcadc1 0604028 7fcadc1 0604028 417ac9a d886d80 417ac9a 0ccf7ba 4d0fb15 417ac9a 6aa9546 417ac9a 6aa9546 805526f 6aa9546 417ac9a 6aa9546 417ac9a 7b82ab9 0ccf7ba 6aa9546 0604028 417ac9a b9c467d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
import argparse
import glob
import json
import logging
import multiprocessing as mp
import os
import time
import uuid
from datetime import timedelta
from functools import lru_cache
from typing import List, Union
import boto3
import gradio as gr
import requests
from huggingface_hub import HfApi
from optimum.onnxruntime import ORTModelForSequenceClassification
from transformers import AutoTokenizer, pipeline
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
hf_token = os.getenv("HF_TOKEN")
hf_api = HfApi(token=hf_token)
num_processes = 2 # mp.cpu_count()
lakera_api_key = os.getenv("LAKERA_API_KEY")
azure_content_safety_endpoint = os.getenv("AZURE_CONTENT_SAFETY_ENDPOINT")
azure_content_safety_key = os.getenv("AZURE_CONTENT_SAFETY_KEY")
bedrock_runtime_client = boto3.client('bedrock-runtime', region_name="us-east-1")
@lru_cache(maxsize=2)
def init_prompt_injection_model(prompt_injection_ort_model: str, subfolder: str = "") -> pipeline:
hf_model = ORTModelForSequenceClassification.from_pretrained(
prompt_injection_ort_model,
export=False,
subfolder=subfolder,
file_name="model.onnx",
token=hf_token,
)
hf_tokenizer = AutoTokenizer.from_pretrained(
prompt_injection_ort_model, subfolder=subfolder, token=hf_token
)
hf_tokenizer.model_input_names = ["input_ids", "attention_mask"]
logger.info(f"Initialized classification ONNX model {prompt_injection_ort_model} on CPU")
return pipeline(
"text-classification",
model=hf_model,
tokenizer=hf_tokenizer,
device="cpu",
batch_size=1,
truncation=True,
max_length=512,
)
def convert_elapsed_time(diff_time) -> float:
return round(timedelta(seconds=diff_time).total_seconds(), 2)
deepset_classifier = init_prompt_injection_model(
"protectai/deberta-v3-base-injection-onnx"
) # ONNX version of deepset/deberta-v3-base-injection
protectai_v2_classifier = init_prompt_injection_model(
"protectai/deberta-v3-base-prompt-injection-v2", "onnx"
)
def detect_hf(
prompt: str,
threshold: float = 0.5,
classifier=protectai_v2_classifier,
label: str = "INJECTION",
) -> (bool, bool):
try:
pi_result = classifier(prompt)
injection_score = round(
pi_result[0]["score"] if pi_result[0]["label"] == label else 1 - pi_result[0]["score"],
2,
)
logger.info(f"Prompt injection result from the HF model: {pi_result}")
return True, injection_score > threshold
except Exception as err:
logger.error(f"Failed to call HF model: {err}")
return False, False
def detect_hf_protectai_v2(prompt: str) -> (bool, bool):
return detect_hf(prompt, classifier=protectai_v2_classifier)
def detect_hf_deepset(prompt: str) -> (bool, bool):
return detect_hf(prompt, classifier=deepset_classifier)
def detect_lakera(prompt: str) -> (bool, bool):
try:
response = requests.post(
"https://api.lakera.ai/v1/prompt_injection",
json={"input": prompt},
headers={"Authorization": f"Bearer {lakera_api_key}"},
)
response_json = response.json()
logger.info(f"Prompt injection result from Lakera: {response.json()}")
return True, response_json["results"][0]["flagged"]
except requests.RequestException as err:
logger.error(f"Failed to call Lakera API: {err}")
return False, False
def detect_azure(prompt: str) -> (bool, bool):
try:
response = requests.post(
f"{azure_content_safety_endpoint}contentsafety/text:shieldPrompt?api-version=2024-02-15-preview",
json={"userPrompt": prompt},
headers={"Ocp-Apim-Subscription-Key": azure_content_safety_key},
)
response_json = response.json()
logger.info(f"Prompt injection result from Azure: {response.json()}")
if "userPromptAnalysis" not in response_json:
return False, False
return True, response_json["userPromptAnalysis"]["attackDetected"]
except requests.RequestException as err:
logger.error(f"Failed to call Azure API: {err}")
return False, False
def detect_aws_bedrock(prompt: str) -> (bool, bool):
response = bedrock_runtime_client.apply_guardrail(
guardrailIdentifier="tx8t6psx14ho",
guardrailVersion="1",
source='INPUT',
content=[
{"text": {"text": prompt}}
])
logger.info(f"Prompt injection result from AWS Bedrock Guardrails: {response}")
if response["ResponseMetadata"]["HTTPStatusCode"] != 200:
logger.error(f"Failed to call AWS Bedrock Guardrails API: {response}")
return False, False
return True, response['action'] != 'NONE'
detection_providers = {
"ProtectAI v2 (HF model)": detect_hf_protectai_v2,
"Deepset (HF model)": detect_hf_deepset,
"Lakera Guard": detect_lakera,
"Azure Content Safety": detect_azure,
"AWS Bedrock Guardrails": detect_aws_bedrock,
}
def is_detected(provider: str, prompt: str) -> (str, bool, bool, float):
if provider not in detection_providers:
logger.warning(f"Provider {provider} is not supported")
return False, 0.0
start_time = time.monotonic()
request_result, is_injection = detection_providers[provider](prompt)
end_time = time.monotonic()
return provider, request_result, is_injection, convert_elapsed_time(end_time - start_time)
def execute(prompt: str) -> List[Union[str, bool, float]]:
results = []
with mp.Pool(processes=num_processes) as pool:
for result in pool.starmap(
is_detected, [(provider, prompt) for provider in detection_providers.keys()]
):
results.append(result)
# Save image and result
fileobj = json.dumps(
{"prompt": prompt, "results": results}, indent=2, ensure_ascii=False
).encode("utf-8")
result_path = f"/prompts/train/{str(uuid.uuid4())}.json"
hf_api.upload_file(
path_or_fileobj=fileobj,
path_in_repo=result_path,
repo_id="protectai/prompt-injection-benchmark",
repo_type="dataset",
)
logger.info(f"Stored prompt: {prompt}")
return results
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--port", type=int, default=7860)
parser.add_argument("--url", type=str, default="0.0.0.0")
args, left_argv = parser.parse_known_args()
example_files = glob.glob(os.path.join(os.path.dirname(__file__), "examples", "*.txt"))
examples = [open(file).read() for file in example_files]
gr.Interface(
fn=execute,
inputs=[
gr.Textbox(label="Prompt"),
],
outputs=[
gr.Dataframe(
headers=[
"Provider",
"Is processed successfully?",
"Is prompt injection?",
"Latency (seconds)",
],
datatype=["str", "bool", "bool", "number"],
label="Results",
),
],
title="Prompt Injection Solutions Benchmark",
description="This interface aims to benchmark the known prompt injection detection providers. "
"The results are <strong>stored in the private dataset</strong> for further analysis and improvements. This interface is for research purposes only."
"<br /><br />"
"HuggingFace (HF) models are hosted on Spaces while other providers are called as APIs.<br /><br />"
'<a href="https://join.slack.com/t/laiyerai/shared_invite/zt-28jv3ci39-sVxXrLs3rQdaN3mIl9IT~w">Join our Slack community to discuss LLM Security</a><br />'
'<a href="https://github.com/protectai/llm-guard">Secure your LLM interactions with LLM Guard</a>',
examples=[
[
example,
False,
]
for example in examples
],
cache_examples=True,
allow_flagging="never",
concurrency_limit=1,
).launch(server_name=args.url, server_port=args.port)
|