Spaces:
Running
Running
zhouxiangxin1998
commited on
Commit
β’
06fad3c
1
Parent(s):
64d3477
fix interactive
Browse files
app.py
CHANGED
@@ -61,55 +61,63 @@ with demo:
|
|
61 |
inverse_folding_table = gr.components.DataFrame(
|
62 |
pd.read_csv('data/inverse_folding.csv'),
|
63 |
height=1000,
|
|
|
64 |
)
|
65 |
with gr.TabItem("π Structure Design Leaderboard", elem_id='structure-design-table', id=1,):
|
66 |
with gr.Row():
|
67 |
inverse_folding_table = gr.components.DataFrame(
|
68 |
pd.read_csv('data/structure_design.csv'),
|
69 |
height=1000,
|
|
|
70 |
)
|
71 |
with gr.TabItem("π Sequence Design Leaderboard", elem_id='sequence-design-table', id=2,):
|
72 |
with gr.Row():
|
73 |
inverse_folding_table = gr.components.DataFrame(
|
74 |
pd.read_csv('data/sequence_design.csv'),
|
75 |
height=1000,
|
|
|
76 |
)
|
77 |
with gr.TabItem("π Sequence-Structure Co-Design Leaderboard", elem_id='co-design-table', id=3,):
|
78 |
with gr.Row():
|
79 |
inverse_folding_table = gr.components.DataFrame(
|
80 |
pd.read_csv('data/co_design.csv'),
|
81 |
height=1000,
|
|
|
82 |
)
|
83 |
with gr.TabItem("π Motif Scaffolding Leaderboard", elem_id='motif-scaffolding-table', id=4,):
|
84 |
with gr.Row():
|
85 |
inverse_folding_table = gr.components.DataFrame(
|
86 |
pd.read_csv('data/motif_scaffolding.csv'),
|
87 |
height=1000,
|
|
|
88 |
)
|
89 |
with gr.TabItem("π Antibody Design Leaderboard", elem_id='antibody-design-table', id=5,):
|
90 |
with gr.Row():
|
91 |
inverse_folding_table = gr.components.DataFrame(
|
92 |
pd.read_csv('data/antibody_design.csv'),
|
93 |
height=1000,
|
|
|
94 |
)
|
95 |
with gr.TabItem("π
Protein Folding Leaderboard", elem_id='protein-folding-table', id=6,):
|
96 |
with gr.Row():
|
97 |
inverse_folding_table = gr.components.DataFrame(
|
98 |
pd.read_csv('data/protein_folding.csv'),
|
99 |
height=1000,
|
|
|
100 |
)
|
101 |
with gr.TabItem("π
Multi-State Prediction Leaderboard", elem_id='multi-state-prediction-table', id=7,):
|
102 |
with gr.Row():
|
103 |
inverse_folding_table = gr.components.DataFrame(
|
104 |
pd.read_csv('data/multi_state_prediction.csv'),
|
105 |
height=10000,
|
106 |
-
interactive=False
|
107 |
)
|
108 |
with gr.TabItem("π
Conformation Prediction Leaderboard", elem_id='conformation-prediction-table', id=8,):
|
109 |
with gr.Row():
|
110 |
inverse_folding_table = gr.components.DataFrame(
|
111 |
pd.read_csv('data/conformation_prediction.csv'),
|
112 |
height=1000,
|
|
|
113 |
)
|
114 |
|
115 |
|
|
|
61 |
inverse_folding_table = gr.components.DataFrame(
|
62 |
pd.read_csv('data/inverse_folding.csv'),
|
63 |
height=1000,
|
64 |
+
interactive=False,
|
65 |
)
|
66 |
with gr.TabItem("π Structure Design Leaderboard", elem_id='structure-design-table', id=1,):
|
67 |
with gr.Row():
|
68 |
inverse_folding_table = gr.components.DataFrame(
|
69 |
pd.read_csv('data/structure_design.csv'),
|
70 |
height=1000,
|
71 |
+
interactive=False,
|
72 |
)
|
73 |
with gr.TabItem("π Sequence Design Leaderboard", elem_id='sequence-design-table', id=2,):
|
74 |
with gr.Row():
|
75 |
inverse_folding_table = gr.components.DataFrame(
|
76 |
pd.read_csv('data/sequence_design.csv'),
|
77 |
height=1000,
|
78 |
+
interactive=False,
|
79 |
)
|
80 |
with gr.TabItem("π Sequence-Structure Co-Design Leaderboard", elem_id='co-design-table', id=3,):
|
81 |
with gr.Row():
|
82 |
inverse_folding_table = gr.components.DataFrame(
|
83 |
pd.read_csv('data/co_design.csv'),
|
84 |
height=1000,
|
85 |
+
interactive=False,
|
86 |
)
|
87 |
with gr.TabItem("π Motif Scaffolding Leaderboard", elem_id='motif-scaffolding-table', id=4,):
|
88 |
with gr.Row():
|
89 |
inverse_folding_table = gr.components.DataFrame(
|
90 |
pd.read_csv('data/motif_scaffolding.csv'),
|
91 |
height=1000,
|
92 |
+
interactive=False,
|
93 |
)
|
94 |
with gr.TabItem("π Antibody Design Leaderboard", elem_id='antibody-design-table', id=5,):
|
95 |
with gr.Row():
|
96 |
inverse_folding_table = gr.components.DataFrame(
|
97 |
pd.read_csv('data/antibody_design.csv'),
|
98 |
height=1000,
|
99 |
+
interactive=False,
|
100 |
)
|
101 |
with gr.TabItem("π
Protein Folding Leaderboard", elem_id='protein-folding-table', id=6,):
|
102 |
with gr.Row():
|
103 |
inverse_folding_table = gr.components.DataFrame(
|
104 |
pd.read_csv('data/protein_folding.csv'),
|
105 |
height=1000,
|
106 |
+
interactive=False,
|
107 |
)
|
108 |
with gr.TabItem("π
Multi-State Prediction Leaderboard", elem_id='multi-state-prediction-table', id=7,):
|
109 |
with gr.Row():
|
110 |
inverse_folding_table = gr.components.DataFrame(
|
111 |
pd.read_csv('data/multi_state_prediction.csv'),
|
112 |
height=10000,
|
113 |
+
interactive=False,
|
114 |
)
|
115 |
with gr.TabItem("π
Conformation Prediction Leaderboard", elem_id='conformation-prediction-table', id=8,):
|
116 |
with gr.Row():
|
117 |
inverse_folding_table = gr.components.DataFrame(
|
118 |
pd.read_csv('data/conformation_prediction.csv'),
|
119 |
height=1000,
|
120 |
+
interactive=False,
|
121 |
)
|
122 |
|
123 |
|