zhouxiangxin1998 commited on
Commit
3e140f1
β€’
1 Parent(s): 1926ca7
Files changed (1) hide show
  1. app.py +8 -0
app.py CHANGED
@@ -62,6 +62,7 @@ with demo:
62
  pd.read_csv('data/inverse_folding.csv'),
63
  height=99999,
64
  interactive=False,
 
65
  )
66
  with gr.TabItem("πŸ† Structure Design Leaderboard", elem_id='structure-design-table', id=1,):
67
  with gr.Row():
@@ -69,6 +70,7 @@ with demo:
69
  pd.read_csv('data/structure_design.csv'),
70
  height=99999,
71
  interactive=False,
 
72
  )
73
  with gr.TabItem("πŸ† Sequence Design Leaderboard", elem_id='sequence-design-table', id=2,):
74
  with gr.Row():
@@ -76,6 +78,7 @@ with demo:
76
  pd.read_csv('data/sequence_design.csv'),
77
  height=99999,
78
  interactive=False,
 
79
  )
80
  with gr.TabItem("πŸ† Sequence-Structure Co-Design Leaderboard", elem_id='co-design-table', id=3,):
81
  with gr.Row():
@@ -83,6 +86,7 @@ with demo:
83
  pd.read_csv('data/co_design.csv'),
84
  height=99999,
85
  interactive=False,
 
86
  )
87
  with gr.TabItem("πŸ† Motif Scaffolding Leaderboard", elem_id='motif-scaffolding-table', id=4,):
88
  with gr.Row():
@@ -90,6 +94,7 @@ with demo:
90
  pd.read_csv('data/motif_scaffolding.csv'),
91
  height=99999,
92
  interactive=False,
 
93
  )
94
  with gr.TabItem("πŸ† Antibody Design Leaderboard", elem_id='antibody-design-table', id=5,):
95
  with gr.Row():
@@ -104,6 +109,7 @@ with demo:
104
  pd.read_csv('data/protein_folding.csv'),
105
  height=99999,
106
  interactive=False,
 
107
  )
108
  with gr.TabItem("πŸ… Multi-State Prediction Leaderboard", elem_id='multi-state-prediction-table', id=7,):
109
  with gr.Row():
@@ -111,6 +117,7 @@ with demo:
111
  pd.read_csv('data/multi_state_prediction.csv'),
112
  height=99999,
113
  interactive=False,
 
114
  )
115
  with gr.TabItem("πŸ… Conformation Prediction Leaderboard", elem_id='conformation-prediction-table', id=8,):
116
  with gr.Row():
@@ -118,6 +125,7 @@ with demo:
118
  pd.read_csv('data/conformation_prediction.csv'),
119
  height=99999,
120
  interactive=False,
 
121
  )
122
 
123
 
 
62
  pd.read_csv('data/inverse_folding.csv'),
63
  height=99999,
64
  interactive=False,
65
+ type=['markdown', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number'],
66
  )
67
  with gr.TabItem("πŸ† Structure Design Leaderboard", elem_id='structure-design-table', id=1,):
68
  with gr.Row():
 
70
  pd.read_csv('data/structure_design.csv'),
71
  height=99999,
72
  interactive=False,
73
+ type=['markdown', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number'],
74
  )
75
  with gr.TabItem("πŸ† Sequence Design Leaderboard", elem_id='sequence-design-table', id=2,):
76
  with gr.Row():
 
78
  pd.read_csv('data/sequence_design.csv'),
79
  height=99999,
80
  interactive=False,
81
+ type=['markdown', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number'],
82
  )
83
  with gr.TabItem("πŸ† Sequence-Structure Co-Design Leaderboard", elem_id='co-design-table', id=3,):
84
  with gr.Row():
 
86
  pd.read_csv('data/co_design.csv'),
87
  height=99999,
88
  interactive=False,
89
+ type=['markdown', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number'],
90
  )
91
  with gr.TabItem("πŸ† Motif Scaffolding Leaderboard", elem_id='motif-scaffolding-table', id=4,):
92
  with gr.Row():
 
94
  pd.read_csv('data/motif_scaffolding.csv'),
95
  height=99999,
96
  interactive=False,
97
+ type=['markdown', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number'],
98
  )
99
  with gr.TabItem("πŸ† Antibody Design Leaderboard", elem_id='antibody-design-table', id=5,):
100
  with gr.Row():
 
109
  pd.read_csv('data/protein_folding.csv'),
110
  height=99999,
111
  interactive=False,
112
+ type=['markdown', 'number', 'number', 'number', 'number', 'number', 'number', 'number'],
113
  )
114
  with gr.TabItem("πŸ… Multi-State Prediction Leaderboard", elem_id='multi-state-prediction-table', id=7,):
115
  with gr.Row():
 
117
  pd.read_csv('data/multi_state_prediction.csv'),
118
  height=99999,
119
  interactive=False,
120
+ type=['markdown', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number'],
121
  )
122
  with gr.TabItem("πŸ… Conformation Prediction Leaderboard", elem_id='conformation-prediction-table', id=8,):
123
  with gr.Row():
 
125
  pd.read_csv('data/conformation_prediction.csv'),
126
  height=99999,
127
  interactive=False,
128
+ type=['markdown', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number'],
129
  )
130
 
131