Spaces:
Running
Running
zhouxiangxin1998
commited on
Commit
β’
bd81d17
1
Parent(s):
46bec0c
gr.components.DataFrame
Browse files
app.py
CHANGED
@@ -58,55 +58,55 @@ with demo:
|
|
58 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
59 |
with gr.TabItem("π Inverse Folding Leaderboard", elem_id='inverse-folding-table', id=0,):
|
60 |
with gr.Row():
|
61 |
-
inverse_folding_table = gr.DataFrame(
|
62 |
pd.read_csv('data/inverse_folding.csv'),
|
63 |
height=1000,
|
64 |
)
|
65 |
with gr.TabItem("π Structure Design Leaderboard", elem_id='structure-design-table', id=1,):
|
66 |
with gr.Row():
|
67 |
-
inverse_folding_table = gr.DataFrame(
|
68 |
pd.read_csv('data/structure_design.csv'),
|
69 |
height=1000,
|
70 |
)
|
71 |
with gr.TabItem("π Sequence Design Leaderboard", elem_id='sequence-design-table', id=2,):
|
72 |
with gr.Row():
|
73 |
-
inverse_folding_table = gr.DataFrame(
|
74 |
pd.read_csv('data/sequence_design.csv'),
|
75 |
height=1000,
|
76 |
)
|
77 |
with gr.TabItem("π Sequence-Structure Co-Design Leaderboard", elem_id='co-design-table', id=3,):
|
78 |
with gr.Row():
|
79 |
-
inverse_folding_table = gr.DataFrame(
|
80 |
pd.read_csv('data/co_design.csv'),
|
81 |
height=1000,
|
82 |
)
|
83 |
with gr.TabItem("π Motif Scaffolding Leaderboard", elem_id='motif-scaffolding-table', id=4,):
|
84 |
with gr.Row():
|
85 |
-
inverse_folding_table = gr.DataFrame(
|
86 |
pd.read_csv('data/motif_scaffolding.csv'),
|
87 |
height=1000,
|
88 |
)
|
89 |
with gr.TabItem("π Antibody Design Leaderboard", elem_id='antibody-design-table', id=5,):
|
90 |
with gr.Row():
|
91 |
-
inverse_folding_table = gr.DataFrame(
|
92 |
pd.read_csv('data/antibody_design.csv'),
|
93 |
height=1000,
|
94 |
)
|
95 |
with gr.TabItem("π
Protein Folding Leaderboard", elem_id='protein-folding-table', id=6,):
|
96 |
with gr.Row():
|
97 |
-
inverse_folding_table = gr.DataFrame(
|
98 |
pd.read_csv('data/protein_folding.csv'),
|
99 |
height=1000,
|
100 |
)
|
101 |
with gr.TabItem("π
Multi-State Prediction Leaderboard", elem_id='multi-state-prediction-table', id=7,):
|
102 |
with gr.Row():
|
103 |
-
inverse_folding_table = gr.DataFrame(
|
104 |
pd.read_csv('data/multi_state_prediction.csv'),
|
105 |
height=1000,
|
106 |
)
|
107 |
with gr.TabItem("π
Conformation Prediction Leaderboard", elem_id='conformation-prediction-table', id=8,):
|
108 |
with gr.Row():
|
109 |
-
inverse_folding_table = gr.DataFrame(
|
110 |
pd.read_csv('data/conformation_prediction.csv'),
|
111 |
height=1000,
|
112 |
)
|
|
|
58 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
59 |
with gr.TabItem("π Inverse Folding Leaderboard", elem_id='inverse-folding-table', id=0,):
|
60 |
with gr.Row():
|
61 |
+
inverse_folding_table = gr.components.DataFrame(
|
62 |
pd.read_csv('data/inverse_folding.csv'),
|
63 |
height=1000,
|
64 |
)
|
65 |
with gr.TabItem("π Structure Design Leaderboard", elem_id='structure-design-table', id=1,):
|
66 |
with gr.Row():
|
67 |
+
inverse_folding_table = gr.components.DataFrame(
|
68 |
pd.read_csv('data/structure_design.csv'),
|
69 |
height=1000,
|
70 |
)
|
71 |
with gr.TabItem("π Sequence Design Leaderboard", elem_id='sequence-design-table', id=2,):
|
72 |
with gr.Row():
|
73 |
+
inverse_folding_table = gr.components.DataFrame(
|
74 |
pd.read_csv('data/sequence_design.csv'),
|
75 |
height=1000,
|
76 |
)
|
77 |
with gr.TabItem("π Sequence-Structure Co-Design Leaderboard", elem_id='co-design-table', id=3,):
|
78 |
with gr.Row():
|
79 |
+
inverse_folding_table = gr.components.DataFrame(
|
80 |
pd.read_csv('data/co_design.csv'),
|
81 |
height=1000,
|
82 |
)
|
83 |
with gr.TabItem("π Motif Scaffolding Leaderboard", elem_id='motif-scaffolding-table', id=4,):
|
84 |
with gr.Row():
|
85 |
+
inverse_folding_table = gr.components.DataFrame(
|
86 |
pd.read_csv('data/motif_scaffolding.csv'),
|
87 |
height=1000,
|
88 |
)
|
89 |
with gr.TabItem("π Antibody Design Leaderboard", elem_id='antibody-design-table', id=5,):
|
90 |
with gr.Row():
|
91 |
+
inverse_folding_table = gr.components.DataFrame(
|
92 |
pd.read_csv('data/antibody_design.csv'),
|
93 |
height=1000,
|
94 |
)
|
95 |
with gr.TabItem("π
Protein Folding Leaderboard", elem_id='protein-folding-table', id=6,):
|
96 |
with gr.Row():
|
97 |
+
inverse_folding_table = gr.components.DataFrame(
|
98 |
pd.read_csv('data/protein_folding.csv'),
|
99 |
height=1000,
|
100 |
)
|
101 |
with gr.TabItem("π
Multi-State Prediction Leaderboard", elem_id='multi-state-prediction-table', id=7,):
|
102 |
with gr.Row():
|
103 |
+
inverse_folding_table = gr.components.DataFrame(
|
104 |
pd.read_csv('data/multi_state_prediction.csv'),
|
105 |
height=1000,
|
106 |
)
|
107 |
with gr.TabItem("π
Conformation Prediction Leaderboard", elem_id='conformation-prediction-table', id=8,):
|
108 |
with gr.Row():
|
109 |
+
inverse_folding_table = gr.components.DataFrame(
|
110 |
pd.read_csv('data/conformation_prediction.csv'),
|
111 |
height=1000,
|
112 |
)
|