Spaces:
Running
Running
Initial commit
Browse files- README.md +3 -3
- app.py +132 -0
- requirements.txt +3 -0
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
title: FLOR 1.3B GL
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.19.2
|
8 |
app_file: app.py
|
|
|
1 |
---
|
2 |
title: FLOR 1.3B GL
|
3 |
+
emoji: 💐
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: white
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.19.2
|
8 |
app_file: app.py
|
app.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from gradio.components import Slider
|
3 |
+
import torch
|
4 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
5 |
+
|
6 |
+
# Model, information and examples ----------------------------------------------
|
7 |
+
model_id = "proxectonos/FLOR-1.3B-GL"
|
8 |
+
title = "Modelo de xeración de texto FLOR-1.3B-GL"
|
9 |
+
markdown_description = """
|
10 |
+
# FLOR-1.3B-GL
|
11 |
+
|
12 |
+
🪷 **[FLOR-1.3B-GL](https://huggingface.co/proxectonos/FLOR-1.3B-GL)** is a 1.3B parameters multilingual LLM for Galician language.
|
13 |
+
|
14 |
+
👀 **Learn more about FLOR-1.3B:** [HF official model card](https://huggingface.co/proxectonos/FLOR-1.3B-GL) and the [Proxecto Nós](https://nos.gal/en/proxecto-nos).
|
15 |
+
"""
|
16 |
+
|
17 |
+
short_prompts_examples = [
|
18 |
+
["A receita tradicional das filloas é"],
|
19 |
+
["O neno vivía preto de"]
|
20 |
+
]
|
21 |
+
|
22 |
+
few_shot_prompts_examples = [
|
23 |
+
["Responde á seguinte pregunta. \nPregunta: \"Cal é a capital de Noruega? \"\nResposta: \"A capital de Noruega é Oslo.\"\n---- \nResponde á seguinte pregunta.\nPregunta: \"Cal é a moeda de Portugal\" \nResposta: \"A moeda de Portugal é o euro.\" \n---- \nResponde á seguinte pregunta. \nPregunta: \"Cal é a capital de Suecia?\"\nResposta:"],
|
24 |
+
["Extrae as entidades nomeadas do seguinte texto: \nTexto: \"Chámome Wolfgang e vivo en Berlin\" \nEntidades: Wolfgang:PER, Berlin:LOC \n ---- \nExtrae as entidades nomeadas do seguinte texto: \nTexto: \"María e Miguel non teñen ningún problema\" \nEntidades: María:PER, Miguel:PER \n---- \nExtrae as entidades nomeadas do seguinte texto: \nTexto: \"O mellor de Barcelona é o bar do meu amigo Pablo\" \nEntidades: Pablo:PER, Barcelona:LOC \n---- \nExtrae as entidades nomeadas do seguinte texto: \nTexto: \"Carlos comparte cuarto con Marc\" \nEntidades:"]
|
25 |
+
]
|
26 |
+
fronted_theme = 'Soft'
|
27 |
+
|
28 |
+
# Model charge ---------------------------------------------------------
|
29 |
+
model_id = "proxectonos/FLOR-1.3B-GL"
|
30 |
+
generator_model = pipeline("text-generation", model=model_id)
|
31 |
+
|
32 |
+
# Generation functions ---------------------------------------------------------
|
33 |
+
def remove_empty_lines(text):
|
34 |
+
lines = text.strip().split("\n")
|
35 |
+
non_empty_lines = [line for line in lines if line.strip()]
|
36 |
+
return "\n".join(non_empty_lines)
|
37 |
+
|
38 |
+
def predict(prompt, max_length, repetition_penalty=1.3):
|
39 |
+
print("Dentro da xeración...")
|
40 |
+
prompt_length = len(generator_model.tokenizer.encode(prompt))
|
41 |
+
generated_text = generator_model(
|
42 |
+
prompt,
|
43 |
+
max_length=prompt_length + max_length,
|
44 |
+
pad_token_id=generator_model.tokenizer.eos_token_id,
|
45 |
+
repetition_penalty=repetition_penalty)
|
46 |
+
|
47 |
+
generated_sequence = generated_text[0]['generated_text']
|
48 |
+
if generated_sequence is None:
|
49 |
+
gr.Warning('Inference endpoint is not available right now. Please try again later.')
|
50 |
+
return
|
51 |
+
|
52 |
+
generated_sequence = remove_empty_lines(generated_sequence)
|
53 |
+
print("Xeración completada")
|
54 |
+
return generated_sequence
|
55 |
+
|
56 |
+
# Gradio app ---------------------------------------------------------
|
57 |
+
def clear():
|
58 |
+
return (
|
59 |
+
None,
|
60 |
+
None,
|
61 |
+
gr.update(value=20),
|
62 |
+
gr.update(value=1.3)
|
63 |
+
)
|
64 |
+
def pass_to_input(generated_gl):
|
65 |
+
return (
|
66 |
+
gr.update(value=generated_gl),
|
67 |
+
None,
|
68 |
+
)
|
69 |
+
|
70 |
+
def gradio_app():
|
71 |
+
with gr.Blocks(theme=fronted_theme) as demo:
|
72 |
+
with gr.Row():
|
73 |
+
with gr.Column(scale=0.1):
|
74 |
+
gr.HTML('<img src="https://huggingface.co/spaces/proxectonos/README/resolve/main/title-card.png" width="100%" style="border-radius: 0.75rem;">')
|
75 |
+
with gr.Column():
|
76 |
+
gr.Markdown(markdown_description)
|
77 |
+
|
78 |
+
with gr.Row(equal_height=True):
|
79 |
+
with gr.Column():
|
80 |
+
text_gl = gr.Textbox(label="Input",
|
81 |
+
lines=6, placeholder="e.g. O neno vai a escola con ")
|
82 |
+
with gr.Row(variant="panel"):
|
83 |
+
with gr.Accordion("Model parameters", open=False):
|
84 |
+
max_length = Slider(
|
85 |
+
minimum=1,
|
86 |
+
maximum=200,
|
87 |
+
step=1,
|
88 |
+
value=30,
|
89 |
+
label="Max tokens"
|
90 |
+
)
|
91 |
+
repetition_penalty = Slider(
|
92 |
+
minimum=0.1,
|
93 |
+
maximum=4,
|
94 |
+
step=0.1,
|
95 |
+
value=1.3,
|
96 |
+
label="Repetition penalty"
|
97 |
+
)
|
98 |
+
generator_btn = gr.Button(value="Generate",variant='primary')
|
99 |
+
with gr.Column():
|
100 |
+
generated_gl = gr.Textbox(label="Output",
|
101 |
+
lines=6,
|
102 |
+
placeholder="Generated text will appear here",
|
103 |
+
interactive=False,
|
104 |
+
show_copy_button=True)
|
105 |
+
pass_btn = gr.Button(value="Pass text to input")
|
106 |
+
clean_btn = gr.Button(value="Clean")
|
107 |
+
|
108 |
+
generator_btn.click(predict, inputs=[text_gl,max_length, repetition_penalty], outputs=generated_gl, api_name="generate-flor-gl")
|
109 |
+
clean_btn.click(fn=clear, inputs=[], outputs=[text_gl, generated_gl, max_length, repetition_penalty], queue=False, api_name=False)
|
110 |
+
pass_btn.click(fn=pass_to_input, inputs=[generated_gl], outputs=[text_gl,generated_gl], queue=False, api_name=False)
|
111 |
+
|
112 |
+
with gr.Row():
|
113 |
+
with gr.Column(scale=0.5):
|
114 |
+
gr.Examples(
|
115 |
+
label = "Short prompts",
|
116 |
+
examples = short_prompts_examples,
|
117 |
+
inputs = [text_gl,max_length, repetition_penalty],
|
118 |
+
outputs = generated_gl,
|
119 |
+
fn =predict
|
120 |
+
)
|
121 |
+
gr.Examples(
|
122 |
+
label = "Few-shot prompts",
|
123 |
+
examples = few_shot_prompts_examples,
|
124 |
+
inputs = [text_gl,max_length, repetition_penalty],
|
125 |
+
outputs = generated_gl,
|
126 |
+
fn =predict
|
127 |
+
)
|
128 |
+
|
129 |
+
demo.launch()
|
130 |
+
|
131 |
+
if __name__ == "__main__":
|
132 |
+
gradio_app()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
torch
|
3 |
+
accelerate
|