File size: 8,128 Bytes
a45988a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os
import shutil
import sys
import tempfile

from diffusers import DiffusionPipeline, SD3Transformer2DModel


sys.path.append("..")
from test_examples_utils import ExamplesTestsAccelerate, run_command  # noqa: E402


logging.basicConfig(level=logging.DEBUG)

logger = logging.getLogger()
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)


class DreamBoothSD3(ExamplesTestsAccelerate):
    instance_data_dir = "docs/source/en/imgs"
    instance_prompt = "photo"
    pretrained_model_name_or_path = "hf-internal-testing/tiny-sd3-pipe"
    script_path = "examples/dreambooth/train_dreambooth_sd3.py"

    def test_dreambooth(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            test_args = f"""
                {self.script_path}
                --pretrained_model_name_or_path {self.pretrained_model_name_or_path}
                --instance_data_dir {self.instance_data_dir}
                --instance_prompt {self.instance_prompt}
                --resolution 64
                --train_batch_size 1
                --gradient_accumulation_steps 1
                --max_train_steps 2
                --learning_rate 5.0e-04
                --scale_lr
                --lr_scheduler constant
                --lr_warmup_steps 0
                --output_dir {tmpdir}
                """.split()

            run_command(self._launch_args + test_args)
            # save_pretrained smoke test
            self.assertTrue(os.path.isfile(os.path.join(tmpdir, "transformer", "diffusion_pytorch_model.safetensors")))
            self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json")))

    def test_dreambooth_checkpointing(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            # Run training script with checkpointing
            # max_train_steps == 4, checkpointing_steps == 2
            # Should create checkpoints at steps 2, 4

            initial_run_args = f"""
                {self.script_path}
                --pretrained_model_name_or_path {self.pretrained_model_name_or_path}
                --instance_data_dir {self.instance_data_dir}
                --instance_prompt {self.instance_prompt}
                --resolution 64
                --train_batch_size 1
                --gradient_accumulation_steps 1
                --max_train_steps 4
                --learning_rate 5.0e-04
                --scale_lr
                --lr_scheduler constant
                --lr_warmup_steps 0
                --output_dir {tmpdir}
                --checkpointing_steps=2
                --seed=0
                """.split()

            run_command(self._launch_args + initial_run_args)

            # check can run the original fully trained output pipeline
            pipe = DiffusionPipeline.from_pretrained(tmpdir)
            pipe(self.instance_prompt, num_inference_steps=1)

            # check checkpoint directories exist
            self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-2")))
            self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-4")))

            # check can run an intermediate checkpoint
            transformer = SD3Transformer2DModel.from_pretrained(tmpdir, subfolder="checkpoint-2/transformer")
            pipe = DiffusionPipeline.from_pretrained(self.pretrained_model_name_or_path, transformer=transformer)
            pipe(self.instance_prompt, num_inference_steps=1)

            # Remove checkpoint 2 so that we can check only later checkpoints exist after resuming
            shutil.rmtree(os.path.join(tmpdir, "checkpoint-2"))

            # Run training script for 7 total steps resuming from checkpoint 4

            resume_run_args = f"""
                {self.script_path}
                --pretrained_model_name_or_path {self.pretrained_model_name_or_path}
                --instance_data_dir {self.instance_data_dir}
                --instance_prompt {self.instance_prompt}
                --resolution 64
                --train_batch_size 1
                --gradient_accumulation_steps 1
                --max_train_steps 6
                --learning_rate 5.0e-04
                --scale_lr
                --lr_scheduler constant
                --lr_warmup_steps 0
                --output_dir {tmpdir}
                --checkpointing_steps=2
                --resume_from_checkpoint=checkpoint-4
                --seed=0
                """.split()

            run_command(self._launch_args + resume_run_args)

            # check can run new fully trained pipeline
            pipe = DiffusionPipeline.from_pretrained(tmpdir)
            pipe(self.instance_prompt, num_inference_steps=1)

            # check old checkpoints do not exist
            self.assertFalse(os.path.isdir(os.path.join(tmpdir, "checkpoint-2")))

            # check new checkpoints exist
            self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-4")))
            self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-6")))

    def test_dreambooth_checkpointing_checkpoints_total_limit(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            test_args = f"""
            {self.script_path}
            --pretrained_model_name_or_path={self.pretrained_model_name_or_path}
            --instance_data_dir={self.instance_data_dir}
            --output_dir={tmpdir}
            --instance_prompt={self.instance_prompt}
            --resolution=64
            --train_batch_size=1
            --gradient_accumulation_steps=1
            --max_train_steps=6
            --checkpoints_total_limit=2
            --checkpointing_steps=2
            """.split()

            run_command(self._launch_args + test_args)

            self.assertEqual(
                {x for x in os.listdir(tmpdir) if "checkpoint" in x},
                {"checkpoint-4", "checkpoint-6"},
            )

    def test_dreambooth_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            test_args = f"""
            {self.script_path}
            --pretrained_model_name_or_path={self.pretrained_model_name_or_path}
            --instance_data_dir={self.instance_data_dir}
            --output_dir={tmpdir}
            --instance_prompt={self.instance_prompt}
            --resolution=64
            --train_batch_size=1
            --gradient_accumulation_steps=1
            --max_train_steps=4
            --checkpointing_steps=2
            """.split()

            run_command(self._launch_args + test_args)

            self.assertEqual(
                {x for x in os.listdir(tmpdir) if "checkpoint" in x},
                {"checkpoint-2", "checkpoint-4"},
            )

            resume_run_args = f"""
            {self.script_path}
            --pretrained_model_name_or_path={self.pretrained_model_name_or_path}
            --instance_data_dir={self.instance_data_dir}
            --output_dir={tmpdir}
            --instance_prompt={self.instance_prompt}
            --resolution=64
            --train_batch_size=1
            --gradient_accumulation_steps=1
            --max_train_steps=8
            --checkpointing_steps=2
            --resume_from_checkpoint=checkpoint-4
            --checkpoints_total_limit=2
            """.split()

            run_command(self._launch_args + resume_run_args)

            self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-6", "checkpoint-8"})