File size: 7,991 Bytes
a45988a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import argparse
from typing import Any, Dict

import torch
from transformers import T5EncoderModel, T5Tokenizer

from diffusers import AutoencoderKLCogVideoX, CogVideoXDDIMScheduler, CogVideoXPipeline, CogVideoXTransformer3DModel


def reassign_query_key_value_inplace(key: str, state_dict: Dict[str, Any]):
    to_q_key = key.replace("query_key_value", "to_q")
    to_k_key = key.replace("query_key_value", "to_k")
    to_v_key = key.replace("query_key_value", "to_v")
    to_q, to_k, to_v = torch.chunk(state_dict[key], chunks=3, dim=0)
    state_dict[to_q_key] = to_q
    state_dict[to_k_key] = to_k
    state_dict[to_v_key] = to_v
    state_dict.pop(key)


def reassign_query_key_layernorm_inplace(key: str, state_dict: Dict[str, Any]):
    layer_id, weight_or_bias = key.split(".")[-2:]

    if "query" in key:
        new_key = f"transformer_blocks.{layer_id}.attn1.norm_q.{weight_or_bias}"
    elif "key" in key:
        new_key = f"transformer_blocks.{layer_id}.attn1.norm_k.{weight_or_bias}"

    state_dict[new_key] = state_dict.pop(key)


def reassign_adaln_norm_inplace(key: str, state_dict: Dict[str, Any]):
    layer_id, _, weight_or_bias = key.split(".")[-3:]

    weights_or_biases = state_dict[key].chunk(12, dim=0)
    norm1_weights_or_biases = torch.cat(weights_or_biases[0:3] + weights_or_biases[6:9])
    norm2_weights_or_biases = torch.cat(weights_or_biases[3:6] + weights_or_biases[9:12])

    norm1_key = f"transformer_blocks.{layer_id}.norm1.linear.{weight_or_bias}"
    state_dict[norm1_key] = norm1_weights_or_biases

    norm2_key = f"transformer_blocks.{layer_id}.norm2.linear.{weight_or_bias}"
    state_dict[norm2_key] = norm2_weights_or_biases

    state_dict.pop(key)


def remove_keys_inplace(key: str, state_dict: Dict[str, Any]):
    state_dict.pop(key)


def replace_up_keys_inplace(key: str, state_dict: Dict[str, Any]):
    key_split = key.split(".")
    layer_index = int(key_split[2])
    replace_layer_index = 4 - 1 - layer_index

    key_split[1] = "up_blocks"
    key_split[2] = str(replace_layer_index)
    new_key = ".".join(key_split)

    state_dict[new_key] = state_dict.pop(key)


TRANSFORMER_KEYS_RENAME_DICT = {
    "transformer.final_layernorm": "norm_final",
    "transformer": "transformer_blocks",
    "attention": "attn1",
    "mlp": "ff.net",
    "dense_h_to_4h": "0.proj",
    "dense_4h_to_h": "2",
    ".layers": "",
    "dense": "to_out.0",
    "input_layernorm": "norm1.norm",
    "post_attn1_layernorm": "norm2.norm",
    "time_embed.0": "time_embedding.linear_1",
    "time_embed.2": "time_embedding.linear_2",
    "mixins.patch_embed": "patch_embed",
    "mixins.final_layer.norm_final": "norm_out.norm",
    "mixins.final_layer.linear": "proj_out",
    "mixins.final_layer.adaLN_modulation.1": "norm_out.linear",
}

TRANSFORMER_SPECIAL_KEYS_REMAP = {
    "query_key_value": reassign_query_key_value_inplace,
    "query_layernorm_list": reassign_query_key_layernorm_inplace,
    "key_layernorm_list": reassign_query_key_layernorm_inplace,
    "adaln_layer.adaLN_modulations": reassign_adaln_norm_inplace,
    "embed_tokens": remove_keys_inplace,
}

VAE_KEYS_RENAME_DICT = {
    "block.": "resnets.",
    "down.": "down_blocks.",
    "downsample": "downsamplers.0",
    "upsample": "upsamplers.0",
    "nin_shortcut": "conv_shortcut",
    "encoder.mid.block_1": "encoder.mid_block.resnets.0",
    "encoder.mid.block_2": "encoder.mid_block.resnets.1",
    "decoder.mid.block_1": "decoder.mid_block.resnets.0",
    "decoder.mid.block_2": "decoder.mid_block.resnets.1",
}

VAE_SPECIAL_KEYS_REMAP = {
    "loss": remove_keys_inplace,
    "up.": replace_up_keys_inplace,
}

TOKENIZER_MAX_LENGTH = 226


def get_state_dict(saved_dict: Dict[str, Any]) -> Dict[str, Any]:
    state_dict = saved_dict
    if "model" in saved_dict.keys():
        state_dict = state_dict["model"]
    if "module" in saved_dict.keys():
        state_dict = state_dict["module"]
    if "state_dict" in saved_dict.keys():
        state_dict = state_dict["state_dict"]
    return state_dict


def update_state_dict_inplace(state_dict: Dict[str, Any], old_key: str, new_key: str) -> Dict[str, Any]:
    state_dict[new_key] = state_dict.pop(old_key)


def convert_transformer(ckpt_path: str):
    PREFIX_KEY = "model.diffusion_model."

    original_state_dict = get_state_dict(torch.load(ckpt_path, map_location="cpu", mmap=True))
    transformer = CogVideoXTransformer3DModel()

    for key in list(original_state_dict.keys()):
        new_key = key[len(PREFIX_KEY) :]
        for replace_key, rename_key in TRANSFORMER_KEYS_RENAME_DICT.items():
            new_key = new_key.replace(replace_key, rename_key)
        update_state_dict_inplace(original_state_dict, key, new_key)

    for key in list(original_state_dict.keys()):
        for special_key, handler_fn_inplace in TRANSFORMER_SPECIAL_KEYS_REMAP.items():
            if special_key not in key:
                continue
            handler_fn_inplace(key, original_state_dict)

    transformer.load_state_dict(original_state_dict, strict=True)
    return transformer


def convert_vae(ckpt_path: str):
    original_state_dict = get_state_dict(torch.load(ckpt_path, map_location="cpu", mmap=True))
    vae = AutoencoderKLCogVideoX()

    for key in list(original_state_dict.keys()):
        new_key = key[:]
        for replace_key, rename_key in VAE_KEYS_RENAME_DICT.items():
            new_key = new_key.replace(replace_key, rename_key)
        update_state_dict_inplace(original_state_dict, key, new_key)

    for key in list(original_state_dict.keys()):
        for special_key, handler_fn_inplace in VAE_SPECIAL_KEYS_REMAP.items():
            if special_key not in key:
                continue
            handler_fn_inplace(key, original_state_dict)

    vae.load_state_dict(original_state_dict, strict=True)
    return vae


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--transformer_ckpt_path", type=str, default=None, help="Path to original transformer checkpoint"
    )
    parser.add_argument("--vae_ckpt_path", type=str, default=None, help="Path to original vae checkpoint")
    parser.add_argument("--output_path", type=str, required=True, help="Path where converted model should be saved")
    parser.add_argument("--fp16", action="store_true", default=True, help="Whether to save the model weights in fp16")
    parser.add_argument(
        "--push_to_hub", action="store_true", default=False, help="Whether to push to HF Hub after saving"
    )
    parser.add_argument(
        "--text_encoder_cache_dir", type=str, default=None, help="Path to text encoder cache directory"
    )
    return parser.parse_args()


if __name__ == "__main__":
    args = get_args()

    transformer = None
    vae = None

    if args.transformer_ckpt_path is not None:
        transformer = convert_transformer(args.transformer_ckpt_path)
    if args.vae_ckpt_path is not None:
        vae = convert_vae(args.vae_ckpt_path)

    text_encoder_id = "google/t5-v1_1-xxl"
    tokenizer = T5Tokenizer.from_pretrained(text_encoder_id, model_max_length=TOKENIZER_MAX_LENGTH)
    text_encoder = T5EncoderModel.from_pretrained(text_encoder_id, cache_dir=args.text_encoder_cache_dir)

    scheduler = CogVideoXDDIMScheduler.from_config(
        {
            "snr_shift_scale": 3.0,
            "beta_end": 0.012,
            "beta_schedule": "scaled_linear",
            "beta_start": 0.00085,
            "clip_sample": False,
            "num_train_timesteps": 1000,
            "prediction_type": "v_prediction",
            "rescale_betas_zero_snr": True,
            "set_alpha_to_one": True,
            "timestep_spacing": "linspace",
        }
    )

    pipe = CogVideoXPipeline(
        tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
    )

    if args.fp16:
        pipe = pipe.to(dtype=torch.float16)

    pipe.save_pretrained(args.output_path, safe_serialization=True, push_to_hub=args.push_to_hub)