Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,162 Bytes
a45988a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
import argparse
from contextlib import nullcontext
import safetensors.torch
import torch
from accelerate import init_empty_weights
from huggingface_hub import hf_hub_download
from diffusers import AutoencoderKL, FluxTransformer2DModel
from diffusers.loaders.single_file_utils import convert_ldm_vae_checkpoint
from diffusers.utils.import_utils import is_accelerate_available
"""
# Transformer
python scripts/convert_flux_to_diffusers.py \
--original_state_dict_repo_id "black-forest-labs/FLUX.1-schnell" \
--filename "flux1-schnell.sft"
--output_path "flux-schnell" \
--transformer
"""
"""
# VAE
python scripts/convert_flux_to_diffusers.py \
--original_state_dict_repo_id "black-forest-labs/FLUX.1-schnell" \
--filename "ae.sft"
--output_path "flux-schnell" \
--vae
"""
CTX = init_empty_weights if is_accelerate_available else nullcontext
parser = argparse.ArgumentParser()
parser.add_argument("--original_state_dict_repo_id", default=None, type=str)
parser.add_argument("--filename", default="flux.safetensors", type=str)
parser.add_argument("--checkpoint_path", default=None, type=str)
parser.add_argument("--vae", action="store_true")
parser.add_argument("--transformer", action="store_true")
parser.add_argument("--output_path", type=str)
parser.add_argument("--dtype", type=str, default="bf16")
args = parser.parse_args()
dtype = torch.bfloat16 if args.dtype == "bf16" else torch.float32
def load_original_checkpoint(args):
if args.original_state_dict_repo_id is not None:
ckpt_path = hf_hub_download(repo_id=args.original_state_dict_repo_id, filename=args.filename)
elif args.checkpoint_path is not None:
ckpt_path = args.checkpoint_path
else:
raise ValueError(" please provide either `original_state_dict_repo_id` or a local `checkpoint_path`")
original_state_dict = safetensors.torch.load_file(ckpt_path)
return original_state_dict
# in SD3 original implementation of AdaLayerNormContinuous, it split linear projection output into shift, scale;
# while in diffusers it split into scale, shift. Here we swap the linear projection weights in order to be able to use diffusers implementation
def swap_scale_shift(weight):
shift, scale = weight.chunk(2, dim=0)
new_weight = torch.cat([scale, shift], dim=0)
return new_weight
def convert_flux_transformer_checkpoint_to_diffusers(
original_state_dict, num_layers, num_single_layers, inner_dim, mlp_ratio=4.0
):
converted_state_dict = {}
## time_text_embed.timestep_embedder <- time_in
converted_state_dict["time_text_embed.timestep_embedder.linear_1.weight"] = original_state_dict.pop(
"time_in.in_layer.weight"
)
converted_state_dict["time_text_embed.timestep_embedder.linear_1.bias"] = original_state_dict.pop(
"time_in.in_layer.bias"
)
converted_state_dict["time_text_embed.timestep_embedder.linear_2.weight"] = original_state_dict.pop(
"time_in.out_layer.weight"
)
converted_state_dict["time_text_embed.timestep_embedder.linear_2.bias"] = original_state_dict.pop(
"time_in.out_layer.bias"
)
## time_text_embed.text_embedder <- vector_in
converted_state_dict["time_text_embed.text_embedder.linear_1.weight"] = original_state_dict.pop(
"vector_in.in_layer.weight"
)
converted_state_dict["time_text_embed.text_embedder.linear_1.bias"] = original_state_dict.pop(
"vector_in.in_layer.bias"
)
converted_state_dict["time_text_embed.text_embedder.linear_2.weight"] = original_state_dict.pop(
"vector_in.out_layer.weight"
)
converted_state_dict["time_text_embed.text_embedder.linear_2.bias"] = original_state_dict.pop(
"vector_in.out_layer.bias"
)
# guidance
has_guidance = any("guidance" in k for k in original_state_dict)
if has_guidance:
converted_state_dict["time_text_embed.guidance_embedder.linear_1.weight"] = original_state_dict.pop(
"guidance_in.in_layer.weight"
)
converted_state_dict["time_text_embed.guidance_embedder.linear_1.bias"] = original_state_dict.pop(
"guidance_in.in_layer.bias"
)
converted_state_dict["time_text_embed.guidance_embedder.linear_2.weight"] = original_state_dict.pop(
"guidance_in.out_layer.weight"
)
converted_state_dict["time_text_embed.guidance_embedder.linear_2.bias"] = original_state_dict.pop(
"guidance_in.out_layer.bias"
)
# context_embedder
converted_state_dict["context_embedder.weight"] = original_state_dict.pop("txt_in.weight")
converted_state_dict["context_embedder.bias"] = original_state_dict.pop("txt_in.bias")
# x_embedder
converted_state_dict["x_embedder.weight"] = original_state_dict.pop("img_in.weight")
converted_state_dict["x_embedder.bias"] = original_state_dict.pop("img_in.bias")
# double transformer blocks
for i in range(num_layers):
block_prefix = f"transformer_blocks.{i}."
# norms.
## norm1
converted_state_dict[f"{block_prefix}norm1.linear.weight"] = original_state_dict.pop(
f"double_blocks.{i}.img_mod.lin.weight"
)
converted_state_dict[f"{block_prefix}norm1.linear.bias"] = original_state_dict.pop(
f"double_blocks.{i}.img_mod.lin.bias"
)
## norm1_context
converted_state_dict[f"{block_prefix}norm1_context.linear.weight"] = original_state_dict.pop(
f"double_blocks.{i}.txt_mod.lin.weight"
)
converted_state_dict[f"{block_prefix}norm1_context.linear.bias"] = original_state_dict.pop(
f"double_blocks.{i}.txt_mod.lin.bias"
)
# Q, K, V
sample_q, sample_k, sample_v = torch.chunk(
original_state_dict.pop(f"double_blocks.{i}.img_attn.qkv.weight"), 3, dim=0
)
context_q, context_k, context_v = torch.chunk(
original_state_dict.pop(f"double_blocks.{i}.txt_attn.qkv.weight"), 3, dim=0
)
sample_q_bias, sample_k_bias, sample_v_bias = torch.chunk(
original_state_dict.pop(f"double_blocks.{i}.img_attn.qkv.bias"), 3, dim=0
)
context_q_bias, context_k_bias, context_v_bias = torch.chunk(
original_state_dict.pop(f"double_blocks.{i}.txt_attn.qkv.bias"), 3, dim=0
)
converted_state_dict[f"{block_prefix}attn.to_q.weight"] = torch.cat([sample_q])
converted_state_dict[f"{block_prefix}attn.to_q.bias"] = torch.cat([sample_q_bias])
converted_state_dict[f"{block_prefix}attn.to_k.weight"] = torch.cat([sample_k])
converted_state_dict[f"{block_prefix}attn.to_k.bias"] = torch.cat([sample_k_bias])
converted_state_dict[f"{block_prefix}attn.to_v.weight"] = torch.cat([sample_v])
converted_state_dict[f"{block_prefix}attn.to_v.bias"] = torch.cat([sample_v_bias])
converted_state_dict[f"{block_prefix}attn.add_q_proj.weight"] = torch.cat([context_q])
converted_state_dict[f"{block_prefix}attn.add_q_proj.bias"] = torch.cat([context_q_bias])
converted_state_dict[f"{block_prefix}attn.add_k_proj.weight"] = torch.cat([context_k])
converted_state_dict[f"{block_prefix}attn.add_k_proj.bias"] = torch.cat([context_k_bias])
converted_state_dict[f"{block_prefix}attn.add_v_proj.weight"] = torch.cat([context_v])
converted_state_dict[f"{block_prefix}attn.add_v_proj.bias"] = torch.cat([context_v_bias])
# qk_norm
converted_state_dict[f"{block_prefix}attn.norm_q.weight"] = original_state_dict.pop(
f"double_blocks.{i}.img_attn.norm.query_norm.scale"
)
converted_state_dict[f"{block_prefix}attn.norm_k.weight"] = original_state_dict.pop(
f"double_blocks.{i}.img_attn.norm.key_norm.scale"
)
converted_state_dict[f"{block_prefix}attn.norm_added_q.weight"] = original_state_dict.pop(
f"double_blocks.{i}.txt_attn.norm.query_norm.scale"
)
converted_state_dict[f"{block_prefix}attn.norm_added_k.weight"] = original_state_dict.pop(
f"double_blocks.{i}.txt_attn.norm.key_norm.scale"
)
# ff img_mlp
converted_state_dict[f"{block_prefix}ff.net.0.proj.weight"] = original_state_dict.pop(
f"double_blocks.{i}.img_mlp.0.weight"
)
converted_state_dict[f"{block_prefix}ff.net.0.proj.bias"] = original_state_dict.pop(
f"double_blocks.{i}.img_mlp.0.bias"
)
converted_state_dict[f"{block_prefix}ff.net.2.weight"] = original_state_dict.pop(
f"double_blocks.{i}.img_mlp.2.weight"
)
converted_state_dict[f"{block_prefix}ff.net.2.bias"] = original_state_dict.pop(
f"double_blocks.{i}.img_mlp.2.bias"
)
converted_state_dict[f"{block_prefix}ff_context.net.0.proj.weight"] = original_state_dict.pop(
f"double_blocks.{i}.txt_mlp.0.weight"
)
converted_state_dict[f"{block_prefix}ff_context.net.0.proj.bias"] = original_state_dict.pop(
f"double_blocks.{i}.txt_mlp.0.bias"
)
converted_state_dict[f"{block_prefix}ff_context.net.2.weight"] = original_state_dict.pop(
f"double_blocks.{i}.txt_mlp.2.weight"
)
converted_state_dict[f"{block_prefix}ff_context.net.2.bias"] = original_state_dict.pop(
f"double_blocks.{i}.txt_mlp.2.bias"
)
# output projections.
converted_state_dict[f"{block_prefix}attn.to_out.0.weight"] = original_state_dict.pop(
f"double_blocks.{i}.img_attn.proj.weight"
)
converted_state_dict[f"{block_prefix}attn.to_out.0.bias"] = original_state_dict.pop(
f"double_blocks.{i}.img_attn.proj.bias"
)
converted_state_dict[f"{block_prefix}attn.to_add_out.weight"] = original_state_dict.pop(
f"double_blocks.{i}.txt_attn.proj.weight"
)
converted_state_dict[f"{block_prefix}attn.to_add_out.bias"] = original_state_dict.pop(
f"double_blocks.{i}.txt_attn.proj.bias"
)
# single transfomer blocks
for i in range(num_single_layers):
block_prefix = f"single_transformer_blocks.{i}."
# norm.linear <- single_blocks.0.modulation.lin
converted_state_dict[f"{block_prefix}norm.linear.weight"] = original_state_dict.pop(
f"single_blocks.{i}.modulation.lin.weight"
)
converted_state_dict[f"{block_prefix}norm.linear.bias"] = original_state_dict.pop(
f"single_blocks.{i}.modulation.lin.bias"
)
# Q, K, V, mlp
mlp_hidden_dim = int(inner_dim * mlp_ratio)
split_size = (inner_dim, inner_dim, inner_dim, mlp_hidden_dim)
q, k, v, mlp = torch.split(original_state_dict.pop(f"single_blocks.{i}.linear1.weight"), split_size, dim=0)
q_bias, k_bias, v_bias, mlp_bias = torch.split(
original_state_dict.pop(f"single_blocks.{i}.linear1.bias"), split_size, dim=0
)
converted_state_dict[f"{block_prefix}attn.to_q.weight"] = torch.cat([q])
converted_state_dict[f"{block_prefix}attn.to_q.bias"] = torch.cat([q_bias])
converted_state_dict[f"{block_prefix}attn.to_k.weight"] = torch.cat([k])
converted_state_dict[f"{block_prefix}attn.to_k.bias"] = torch.cat([k_bias])
converted_state_dict[f"{block_prefix}attn.to_v.weight"] = torch.cat([v])
converted_state_dict[f"{block_prefix}attn.to_v.bias"] = torch.cat([v_bias])
converted_state_dict[f"{block_prefix}proj_mlp.weight"] = torch.cat([mlp])
converted_state_dict[f"{block_prefix}proj_mlp.bias"] = torch.cat([mlp_bias])
# qk norm
converted_state_dict[f"{block_prefix}attn.norm_q.weight"] = original_state_dict.pop(
f"single_blocks.{i}.norm.query_norm.scale"
)
converted_state_dict[f"{block_prefix}attn.norm_k.weight"] = original_state_dict.pop(
f"single_blocks.{i}.norm.key_norm.scale"
)
# output projections.
converted_state_dict[f"{block_prefix}proj_out.weight"] = original_state_dict.pop(
f"single_blocks.{i}.linear2.weight"
)
converted_state_dict[f"{block_prefix}proj_out.bias"] = original_state_dict.pop(
f"single_blocks.{i}.linear2.bias"
)
converted_state_dict["proj_out.weight"] = original_state_dict.pop("final_layer.linear.weight")
converted_state_dict["proj_out.bias"] = original_state_dict.pop("final_layer.linear.bias")
converted_state_dict["norm_out.linear.weight"] = swap_scale_shift(
original_state_dict.pop("final_layer.adaLN_modulation.1.weight")
)
converted_state_dict["norm_out.linear.bias"] = swap_scale_shift(
original_state_dict.pop("final_layer.adaLN_modulation.1.bias")
)
return converted_state_dict
def main(args):
original_ckpt = load_original_checkpoint(args)
has_guidance = any("guidance" in k for k in original_ckpt)
if args.transformer:
num_layers = 19
num_single_layers = 38
inner_dim = 3072
mlp_ratio = 4.0
converted_transformer_state_dict = convert_flux_transformer_checkpoint_to_diffusers(
original_ckpt, num_layers, num_single_layers, inner_dim, mlp_ratio=mlp_ratio
)
transformer = FluxTransformer2DModel(guidance_embeds=has_guidance)
transformer.load_state_dict(converted_transformer_state_dict, strict=True)
print(
f"Saving Flux Transformer in Diffusers format. Variant: {'guidance-distilled' if has_guidance else 'timestep-distilled'}"
)
transformer.to(dtype).save_pretrained(f"{args.output_path}/transformer")
if args.vae:
config = AutoencoderKL.load_config("stabilityai/stable-diffusion-3-medium-diffusers", subfolder="vae")
vae = AutoencoderKL.from_config(config, scaling_factor=0.3611, shift_factor=0.1159).to(torch.bfloat16)
converted_vae_state_dict = convert_ldm_vae_checkpoint(original_ckpt, vae.config)
vae.load_state_dict(converted_vae_state_dict, strict=True)
vae.to(dtype).save_pretrained(f"{args.output_path}/vae")
if __name__ == "__main__":
main(args)
|