File size: 20,261 Bytes
a45988a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
# Copyright 2024 Bingxin Ke, ETH Zurich. All rights reserved.
# Last modified: 2024-11-28
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ---------------------------------------------------------------------------------
# If you find this code useful, we kindly ask you to cite our paper in your work.
# Please find bibtex at: https://github.com/prs-eth/RollingDepth#-citation
# More information about the method can be found at https://rollingdepth.github.io
# ---------------------------------------------------------------------------------

import argparse
import logging
import os
from pathlib import Path

import numpy as np
import torch
from tqdm.auto import tqdm
import einops
from omegaconf import OmegaConf

from rollingdepth import (
    RollingDepthOutput,
    RollingDepthPipeline,
    write_video_from_numpy,
    get_video_fps,
    concatenate_videos_horizontally_torch,
)
from src.util.colorize import colorize_depth_multi_thread
from src.util.config import str2bool

if "__main__" == __name__:
    logging.basicConfig(level=logging.INFO)

    # -------------------- Arguments --------------------
    parser = argparse.ArgumentParser(
        description="Run video depth estimation using RollingDepth."
    )
    parser.add_argument(
        "-i",
        "--input-video",
        type=str,
        required=True,
        help=(
            "Path to the input video(s) to be processed. Accepts: "
            "- Single video file path (e.g., 'video.mp4') "
            "- Text file containing a list of video paths (one per line) "
            "- Directory path containing video files "
            "Required argument."
        ),
        dest="input_video",
    )
    parser.add_argument(
        "-o",
        "--output-dir",
        type=str,
        required=True,
        help=(
            "Directory path where processed outputs will be saved. "
            "Will be created if it doesn't exist. "
            "Required argument."
        ),
        dest="output_dir",
    )
    parser.add_argument(
        "-p",
        "--preset",
        type=str,
        choices=["fast", "fast1024", "full", "paper", "none"],
        help="Inference preset. TODO: write detailed explanation",
    )
    parser.add_argument(
        "--start-frame",
        "--from",
        type=int,
        default=0,
        help=(
            "Specifies the starting frame index for processing. "
            "Use 0 to start from the beginning of the video. "
            "Default: 0"
        ),
        dest="start_frame",
    )
    parser.add_argument(
        "--frame-count",
        "--frames",
        type=int,
        default=0,
        help=(
            "Number of frames to process after the starting frame. "
            "Set to 0 to process until the end of the video. "
            "Default: 0 (process all frames)"
        ),
        dest="frame_count",
    )

    parser.add_argument(
        "-c",
        "--checkpoint",
        type=str,
        default="prs-eth/rollingdepth-v1-0",
        help=(
            "Path to the model checkpoint to use for inference. Can be either: "
            "- A local path to checkpoint files "
            "- A Hugging Face model hub identifier (e.g., 'prs-eth/rollingdepth-v1-0') "
            "Default: 'prs-eth/rollingdepth-v1-0'"
        ),
        dest="checkpoint",
    )
    parser.add_argument(
        "--res",
        "--processing-resolution",
        type=int,
        default=None,
        help=(
            "Specifies the maximum resolution (in pixels) at which image processing will be performed. "
            "If set to None, uses the preset configuration value. "
            "If set to 0, processes at the original input image resolution. "
            "Default: None"
        ),
        dest="res",
    )
    parser.add_argument(
        "--max-vae-bs",
        type=int,
        default=4,
        help=(
            "Maximum batch size for the Variational Autoencoder (VAE) processing. "
            "Higher values increase memory usage but may improve processing speed. "
            "Reduce this value if encountering out-of-memory errors. "
            "Default: 4"
        ),
    )

    # Output settings
    parser.add_argument(
        "--fps",
        "--output-fps",
        type=int,
        default=0,
        help=(
            "Frame rate (FPS) for the output video. "
            "Set to 0 to match the input video's frame rate. "
            "Default: 0"
        ),
        dest="output_fps",
    )
    parser.add_argument(
        "--restore-resolution",
        "--restore-res",
        type=str2bool,
        nargs="?",
        default=False,
        help=(
            "Whether to restore the output to the original input resolution after processing. "
            "Only applies when input has been resized during processing. "
            "Default: False"
        ),
        dest="restore_res",
    )
    parser.add_argument(
        "--save-sbs" "--save-side-by-side",
        type=str2bool,
        nargs="?",
        default=True,
        help=(
            "Whether to save RGB and colored depth videos side-by-side. "
            "If True, the first color map will be used. "
            "Default: True"
        ),
        dest="save_sbs",
    )
    parser.add_argument(
        "--save-npy",
        type=str2bool,
        nargs="?",
        default=True,
        help=(
            "Whether to save depth maps as NumPy (.npy) files. "
            "Enables further processing and analysis of raw depth data. "
            "Default: True"
        ),
    )
    parser.add_argument(
        "--save-snippets",
        type=str2bool,
        nargs="?",
        default=False,
        help=(
            "Whether to save visualization snippets of the depth estimation process. "
            "Useful for debugging and quality assessment. "
            "Default: False"
        ),
    )
    parser.add_argument(
        "--cmap",
        "--color-maps",
        type=str,
        nargs="+",
        default=["Spectral_r", "Greys_r"],
        help=(
            "One or more matplotlib color maps for depth visualization. "
            "Multiple maps can be specified for different visualization styles. "
            "Common options: 'Spectral_r', 'Greys_r', 'viridis', 'magma'. "
            "Use '' (empty string) to skip colorization. "
            "Default: ['Spectral_r', 'Greys_r']"
        ),
        dest="color_maps",
    )

    # Inference setting
    parser.add_argument(
        "-d",
        "--dilations",
        type=int,
        nargs="+",
        default=None,
        help=(
            "Spacing between frames for temporal analysis. "
            "Set to None to use preset configurations based on video length. "
            "Custom configurations: "
            "- [1, 10, 25]: Best accuracy, slower processing "
            "- [1, 25]: Balanced speed and accuracy "
            "- [1, 10]: For short videos (<78 frames) "
            "Default: None (auto-select based on video length)"
        ),
        dest="dilations",
    )
    parser.add_argument(
        "--cap-dilation",
        type=str2bool,
        default=None,
        help=(
            "Whether to automatically reduce dilation spacing for short videos. "
            "Set to None to use preset configuration. "
            "Enabling this prevents temporal windows from extending beyond video length. "
            "Default: None (automatically determined based on video length)"
        ),
        dest="cap_dilation",
    )
    parser.add_argument(
        "--dtype",
        "--data-type",
        type=str,
        choices=["fp16", "fp32", None],
        default=None,
        help=(
            "Specifies the floating-point precision for inference operations. "
            "Options: 'fp16' (16-bit), 'fp32' (32-bit), or None. "
            "If None, uses the preset configuration value. "
            "Lower precision (fp16) reduces memory usage but may affect accuracy. "
            "Default: None"
        ),
        dest="dtype",
    )
    parser.add_argument(
        "--snip-len",
        "--snippet-lengths",
        type=int,
        nargs="+",
        choices=[2, 3, 4],
        default=None,
        help=(
            "Number of consecutive frames to analyze in each temporal window. "
            "Set to None to use preset value (3). "
            "Can specify multiple values corresponding to different dilation rates. "
            "Example: '--dilations 1 25 --snippet-length 2 3' uses "
            "2 frames for dilation 1 and 3 frames for dilation 25. "
            "Allowed values: 2, 3, or 4 frames. "
            "Default: None"
        ),
        dest="snippet_lengths",
    )
    parser.add_argument(
        "--refine-step",
        type=int,
        default=None,
        help=(
            "Number of refinement iterations to improve depth estimation accuracy. "
            "Set to None to use preset configuration. "
            "Set to 0 to disable refinement. "
            "Higher values may improve accuracy but increase processing time. "
            "Default: None (uses 0, no refinement)"
        ),
        dest="refine_step",
    )
    parser.add_argument(
        "--refine-snippet-len",
        type=int,
        default=None,
        help=(
            "Length of text snippets used during the refinement phase. "
            "Specifies the number of sentences or segments to process at once. "
            "If not specified (None), system-defined preset values will be used. "
            "Default: None"
        ),
    )
    parser.add_argument(
        "--refine-start-dilation",
        type=int,
        default=None,
        help=(
            "Initial dilation factor for the coarse-to-fine refinement process. "
            "Controls the starting granularity of the refinement steps. "
            "Higher values result in larger initial search windows. "
            "If not specified (None), uses system default. "
            "Default: None"
        ),
    )

    # Other settings
    parser.add_argument(
        "--resample-method",
        type=str,
        choices=["BILINEAR", "NEAREST_EXACT", "BICUBIC"],
        default="BILINEAR",
        help="Resampling method used to resize images.",
    )
    parser.add_argument(
        "--unload-snippet",
        type=str2bool,
        default=False,
        help=(
            "Controls memory optimization by moving processed data snippets to CPU. "
            "When enabled, reduces GPU memory usage at the cost of slower processing. "
            "Useful for systems with limited GPU memory or large datasets. "
            "Default: False"
        ),
    )
    parser.add_argument(
        "--verbose",
        action="store_true",
        help=("Enable detailed progress and information reporting during processing. "),
    )
    parser.add_argument(
        "--seed",
        type=int,
        default=None,
        help=(
            "Random number generator seed for reproducibility (up to computational randomness). "
            "Using the same seed value will produce identical results across runs. "
            "If not specified (None), a random seed will be used. "
            "Default: None"
        ),
    )

    # -------------------- Config preset arguments --------------------
    input_args = parser.parse_args()

    args = OmegaConf.create(
        {
            "res": 768,
            "snippet_lengths": [3],
            "cap_dilation": True,
            "dtype": "fp16",
            "refine_snippet_len": 3,
            "refine_start_dilation": 6,
        }
    )
    preset_args_dict = {
        "fast": OmegaConf.create(
            {
                "dilations": [1, 25],
                "refine_step": 0,
            }
        ),
        "fasthr": OmegaConf.create(
            {
                "res": 1024,
                "dilations": [1, 25],
                "refine_step": 0,
            }
        ),
        "full": OmegaConf.create(
            {
                "res": 1024,
                "dilations": [1, 10, 25],
                "refine_step": 10,
            }
        ),
        "paper": OmegaConf.create(
            {
                "dilations": [1, 10, 25],
                "cap_dilation": False,
                "dtype": "fp32",
                "refine_step": 10,
            }
        ),
    }
    if "none" != input_args.preset:
        logging.info(f"Using preset: {input_args.preset}")
        args.update(preset_args_dict[input_args.preset])

    # Merge or overwrite arguments
    for key, value in vars(input_args).items():
        if key in args.keys():
            # overwrite if value is set and different from preset
            if value is not None and value != args[key]:
                logging.warning(f"Overwritting argument: {key} = {value}")
                args[key] = value
        else:
            # add argument
            args[key] = value
            # sanity check
            assert value is not None or key in ["seed"], f"Undefined argument: {key}"

    msg = f"arguments: {args}"
    if args.verbose:
        logging.info(msg)
    else:
        logging.debug(msg)

    # Argument check
    if args.save_sbs:
        assert (
            len(args.color_maps) > 0
        ), "No color map is given, can not save side-by-side videos."

    input_video = Path(args.input_video)
    output_dir = Path(args.output_dir)
    os.makedirs(output_dir, exist_ok=True)

    # -------------------- Device --------------------
    if torch.cuda.is_available():
        device = torch.device("cuda")
    else:
        device = torch.device("cpu")
        logging.warning("CUDA is not available. Running on CPU will be slow.")
    logging.info(f"device = {device}")

    # -------------------- Data --------------------
    if input_video.is_dir():
        input_video_ls = os.listdir(input_video)
        input_video_ls = [input_video.joinpath(v_name) for v_name in input_video_ls]
    elif ".txt" == input_video.suffix:
        with open(input_video, "r") as f:
            input_video_ls = f.readlines()
        input_video_ls = [Path(s.strip()) for s in input_video_ls]
    else:
        input_video_ls = [Path(input_video)]
    input_video_ls = sorted(input_video_ls)

    logging.info(f"Found {len(input_video_ls)} videos.")

    # -------------------- Model --------------------
    if "fp16" == args.dtype:
        dtype = torch.float16
    elif "fp32" == args.dtype:
        dtype = torch.float32
    else:
        raise ValueError(f"Unsupported dtype: {args.dtype}")

    pipe: RollingDepthPipeline = RollingDepthPipeline.from_pretrained(
        args.checkpoint, torch_dtype=dtype
    )  # type: ignore

    try:
        pipe.enable_xformers_memory_efficient_attention()
        logging.info("xformers enabled")
    except ImportError:
        logging.warning("Run without xformers")

    pipe = pipe.to(device)

    # -------------------- Inference and saving --------------------
    with torch.no_grad():
        if args.verbose:
            video_iterable = tqdm(input_video_ls, desc="Processing videos", leave=True)
        else:
            video_iterable = input_video_ls
        for video_path in video_iterable:
            # Random number generator
            if args.seed is None:
                generator = None
            else:
                generator = torch.Generator(device=device)
                generator.manual_seed(args.seed)

            # Predict depth
            pipe_out: RollingDepthOutput = pipe(
                # input setting
                input_video_path=video_path,
                start_frame=args.start_frame,
                frame_count=args.frame_count,
                processing_res=args.res,
                resample_method=args.resample_method,
                # infer setting
                dilations=list(args.dilations),
                cap_dilation=args.cap_dilation,
                snippet_lengths=list(args.snippet_lengths),
                init_infer_steps=[1],
                strides=[1],
                coalign_kwargs=None,
                refine_step=args.refine_step,
                refine_snippet_len=args.refine_snippet_len,
                refine_start_dilation=args.refine_start_dilation,
                # other settings
                generator=generator,
                verbose=args.verbose,
                max_vae_bs=args.max_vae_bs,
                # output settings
                restore_res=args.restore_res,
                unload_snippet=args.unload_snippet,
            )

            depth_pred = pipe_out.depth_pred  # [N 1 H W]

            os.makedirs(output_dir, exist_ok=True)

            # Save prediction as npy
            if args.save_npy:
                save_to = output_dir.joinpath(f"{video_path.stem}_pred.npy")
                if args.verbose:
                    logging.info(f"Saving predictions to {save_to}")
                np.save(save_to, depth_pred.numpy().squeeze(1))  # [N H W]

            # Save intermediate snippets
            if args.save_snippets and pipe_out.snippet_ls is not None:
                save_to = output_dir.joinpath(f"{video_path.stem}_snippets.npz")
                if args.verbose:
                    logging.info(f"Saving snippets to {save_to}")
                snippet_dict = {}
                for i_dil, snippets in enumerate(pipe_out.snippet_ls):
                    dilation = args.dilations[i_dil]
                    snippet_dict[f"dilation{dilation}"] = snippets.numpy().squeeze(
                        2
                    )  # [n_snip, snippet_len, H W]
                np.savez_compressed(save_to, **snippet_dict)

            # Colorize results
            for i_cmap, cmap in enumerate(args.color_maps):
                if "" == cmap:
                    continue
                colored_np = colorize_depth_multi_thread(
                    depth=depth_pred.numpy(),
                    valid_mask=None,
                    chunk_size=4,
                    num_threads=4,
                    color_map=cmap,
                    verbose=args.verbose,
                )  # [n h w 3], in [0, 255]
                save_to = output_dir.joinpath(f"{video_path.stem}_{cmap}.mp4")
                if not args.output_fps > 0:
                    output_fps = int(get_video_fps(video_path))
                write_video_from_numpy(
                    frames=colored_np,
                    output_path=save_to,
                    fps=args.output_fps,
                    crf=23,
                    preset="medium",
                    verbose=args.verbose,
                )

                # Save side-by-side videos
                if args.save_sbs and 0 == i_cmap:
                    rgb = pipe_out.input_rgb * 255  # [N 3 H W]
                    colored_depth = einops.rearrange(
                        torch.from_numpy(colored_np), "n h w c -> n c h w"
                    )
                    concat_video = (
                        concatenate_videos_horizontally_torch(rgb, colored_depth, gap=10)
                        .int()
                        .numpy()
                        .astype(np.uint8)
                    )
                    concat_video = einops.rearrange(concat_video, "n c h w -> n h w c")
                    save_to = output_dir.joinpath(f"{video_path.stem}_rgbd.mp4")
                    write_video_from_numpy(
                        frames=concat_video,
                        output_path=save_to,
                        fps=args.output_fps,
                        crf=23,
                        preset="medium",
                        verbose=args.verbose,
                    )

        logging.info(
            f"Finished. {len(video_iterable)} predictions are saved to {output_dir}"
        )