Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
from typing import Dict | |
import torch | |
import torch.nn as nn | |
from diffusers import SparseControlNetModel | |
KEYS_RENAME_MAPPING = { | |
".attention_blocks.0": ".attn1", | |
".attention_blocks.1": ".attn2", | |
".attn1.pos_encoder": ".pos_embed", | |
".ff_norm": ".norm3", | |
".norms.0": ".norm1", | |
".norms.1": ".norm2", | |
".temporal_transformer": "", | |
} | |
def convert(original_state_dict: Dict[str, nn.Module]) -> Dict[str, nn.Module]: | |
converted_state_dict = {} | |
for key in list(original_state_dict.keys()): | |
renamed_key = key | |
for new_name, old_name in KEYS_RENAME_MAPPING.items(): | |
renamed_key = renamed_key.replace(new_name, old_name) | |
converted_state_dict[renamed_key] = original_state_dict.pop(key) | |
return converted_state_dict | |
def get_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--ckpt_path", type=str, required=True, help="Path to checkpoint") | |
parser.add_argument("--output_path", type=str, required=True, help="Path to output directory") | |
parser.add_argument( | |
"--max_motion_seq_length", | |
type=int, | |
default=32, | |
help="Max motion sequence length supported by the motion adapter", | |
) | |
parser.add_argument( | |
"--conditioning_channels", type=int, default=4, help="Number of channels in conditioning input to controlnet" | |
) | |
parser.add_argument( | |
"--use_simplified_condition_embedding", | |
action="store_true", | |
default=False, | |
help="Whether or not to use simplified condition embedding. When `conditioning_channels==4` i.e. latent inputs, set this to `True`. When `conditioning_channels==3` i.e. image inputs, set this to `False`", | |
) | |
parser.add_argument( | |
"--save_fp16", | |
action="store_true", | |
default=False, | |
help="Whether or not to save model in fp16 precision along with fp32", | |
) | |
parser.add_argument( | |
"--push_to_hub", action="store_true", default=False, help="Whether or not to push saved model to the HF hub" | |
) | |
return parser.parse_args() | |
if __name__ == "__main__": | |
args = get_args() | |
state_dict = torch.load(args.ckpt_path, map_location="cpu") | |
if "state_dict" in state_dict.keys(): | |
state_dict: dict = state_dict["state_dict"] | |
controlnet = SparseControlNetModel( | |
conditioning_channels=args.conditioning_channels, | |
motion_max_seq_length=args.max_motion_seq_length, | |
use_simplified_condition_embedding=args.use_simplified_condition_embedding, | |
) | |
state_dict = convert(state_dict) | |
controlnet.load_state_dict(state_dict, strict=True) | |
controlnet.save_pretrained(args.output_path, push_to_hub=args.push_to_hub) | |
if args.save_fp16: | |
controlnet = controlnet.to(dtype=torch.float16) | |
controlnet.save_pretrained(args.output_path, variant="fp16", push_to_hub=args.push_to_hub) | |