rollingdepth / rollingdepth_src /diffusers /scripts /convert_animatediff_sparsectrl_to_diffusers.py
toshas's picture
initial commit
a45988a
raw
history blame
2.89 kB
import argparse
from typing import Dict
import torch
import torch.nn as nn
from diffusers import SparseControlNetModel
KEYS_RENAME_MAPPING = {
".attention_blocks.0": ".attn1",
".attention_blocks.1": ".attn2",
".attn1.pos_encoder": ".pos_embed",
".ff_norm": ".norm3",
".norms.0": ".norm1",
".norms.1": ".norm2",
".temporal_transformer": "",
}
def convert(original_state_dict: Dict[str, nn.Module]) -> Dict[str, nn.Module]:
converted_state_dict = {}
for key in list(original_state_dict.keys()):
renamed_key = key
for new_name, old_name in KEYS_RENAME_MAPPING.items():
renamed_key = renamed_key.replace(new_name, old_name)
converted_state_dict[renamed_key] = original_state_dict.pop(key)
return converted_state_dict
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--ckpt_path", type=str, required=True, help="Path to checkpoint")
parser.add_argument("--output_path", type=str, required=True, help="Path to output directory")
parser.add_argument(
"--max_motion_seq_length",
type=int,
default=32,
help="Max motion sequence length supported by the motion adapter",
)
parser.add_argument(
"--conditioning_channels", type=int, default=4, help="Number of channels in conditioning input to controlnet"
)
parser.add_argument(
"--use_simplified_condition_embedding",
action="store_true",
default=False,
help="Whether or not to use simplified condition embedding. When `conditioning_channels==4` i.e. latent inputs, set this to `True`. When `conditioning_channels==3` i.e. image inputs, set this to `False`",
)
parser.add_argument(
"--save_fp16",
action="store_true",
default=False,
help="Whether or not to save model in fp16 precision along with fp32",
)
parser.add_argument(
"--push_to_hub", action="store_true", default=False, help="Whether or not to push saved model to the HF hub"
)
return parser.parse_args()
if __name__ == "__main__":
args = get_args()
state_dict = torch.load(args.ckpt_path, map_location="cpu")
if "state_dict" in state_dict.keys():
state_dict: dict = state_dict["state_dict"]
controlnet = SparseControlNetModel(
conditioning_channels=args.conditioning_channels,
motion_max_seq_length=args.max_motion_seq_length,
use_simplified_condition_embedding=args.use_simplified_condition_embedding,
)
state_dict = convert(state_dict)
controlnet.load_state_dict(state_dict, strict=True)
controlnet.save_pretrained(args.output_path, push_to_hub=args.push_to_hub)
if args.save_fp16:
controlnet = controlnet.to(dtype=torch.float16)
controlnet.save_pretrained(args.output_path, variant="fp16", push_to_hub=args.push_to_hub)