name: Benchmarking tests on: workflow_dispatch: schedule: - cron: "30 1 1,15 * *" # every 2 weeks on the 1st and the 15th of every month at 1:30 AM env: DIFFUSERS_IS_CI: yes HF_HOME: /mnt/cache OMP_NUM_THREADS: 8 MKL_NUM_THREADS: 8 jobs: torch_pipelines_cuda_benchmark_tests: env: SLACK_WEBHOOK_URL: ${{ secrets.SLACK_WEBHOOK_URL_BENCHMARK }} name: Torch Core Pipelines CUDA Benchmarking Tests strategy: fail-fast: false max-parallel: 1 runs-on: group: aws-g6-4xlarge-plus container: image: diffusers/diffusers-pytorch-compile-cuda options: --shm-size "16gb" --ipc host --gpus 0 steps: - name: Checkout diffusers uses: actions/checkout@v3 with: fetch-depth: 2 - name: NVIDIA-SMI run: | nvidia-smi - name: Install dependencies run: | python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH" python -m uv pip install -e [quality,test] python -m uv pip install pandas peft - name: Environment run: | python utils/print_env.py - name: Diffusers Benchmarking env: HF_TOKEN: ${{ secrets.DIFFUSERS_BOT_TOKEN }} BASE_PATH: benchmark_outputs run: | export TOTAL_GPU_MEMORY=$(python -c "import torch; print(torch.cuda.get_device_properties(0).total_memory / (1024**3))") cd benchmarks && mkdir ${BASE_PATH} && python run_all.py && python push_results.py - name: Test suite reports artifacts if: ${{ always() }} uses: actions/upload-artifact@v2 with: name: benchmark_test_reports path: benchmarks/benchmark_outputs - name: Report success status if: ${{ success() }} run: | pip install requests && python utils/notify_benchmarking_status.py --status=success - name: Report failure status if: ${{ failure() }} run: | pip install requests && python utils/notify_benchmarking_status.py --status=failure