Spaces:
Runtime error
Runtime error
from transformers import AutoConfig, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, MistralForCausalLM | |
from peft import PeftModel, PeftConfig | |
import torch | |
import gradio as gr | |
import random | |
from textwrap import wrap | |
# Functions to Wrap the Prompt Correctly | |
def wrap_text(text, width=90): | |
lines = text.split('\n') | |
wrapped_lines = [textwrap.fill(line, width=width) for line in lines] | |
wrapped_text = '\n'.join(wrapped_lines) | |
return wrapped_text | |
def multimodal_prompt(user_input, system_prompt): | |
""" | |
Generates text using a large language model, given a user input and a system prompt. | |
Args: | |
user_input: The user's input text to generate a response for. | |
system_prompt: Optional system prompt. | |
Returns: | |
A string containing the generated text in the Falcon-like format. | |
""" | |
# Combine user input and system prompt | |
formatted_input = f"{{{{ {system_prompt} }}}}\nUser: {user_input}\nFalcon:" | |
# Encode the input text | |
encodeds = tokenizer(formatted_input, return_tensors="pt", add_special_tokens=False) | |
model_inputs = encodeds.to(device) | |
# Generate a response using the model | |
output = peft_model.generate( | |
**model_inputs, | |
max_length=400, | |
use_cache=True, | |
early_stopping=False, | |
bos_token_id=peft_model.config.bos_token_id, | |
eos_token_id=peft_model.config.eos_token_id, | |
pad_token_id=peft_model.config.eos_token_id, | |
temperature=0.4, | |
do_sample=True | |
) | |
# Decode the response | |
response_text = tokenizer.decode(output[0], skip_special_tokens=True) | |
return response_text | |
# Define the device | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Use the base model's ID | |
base_model_id = "tiiuae/falcon-7b-instruct" | |
model_directory = "Tonic/GaiaMiniMed" | |
# Instantiate the Tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(base_model_id, trust_remote_code=True, padding_side="left") | |
# tokenizer = AutoTokenizer.from_pretrained("Tonic/mistralmed", trust_remote_code=True, padding_side="left") | |
# tokenizer.pad_token = tokenizer.eos_token | |
# tokenizer.padding_side = 'left' | |
# Load the GaiaMiniMed model with the specified configuration | |
# Load the Peft model with a specific configuration | |
# Specify the configuration class for the model | |
model_config = AutoConfig.from_pretrained(base_model_id) | |
# Load the PEFT model with the specified configuration | |
peft_model = AutoModelForCausalLM.from_pretrained(model_directory, config=model_config) | |
peft_model = PeftModel.from_pretrained(peft_model, model_directory) | |
# Specify the configuration class for the model | |
#model_config = AutoConfig.from_pretrained(base_model_id) | |
# Load the PEFT model with the specified configuration | |
#peft_model = AutoModelForCausalLM.from_pretrained(base_model_id, config=model_config) | |
# Load the PEFT model | |
# peft_config = PeftConfig.from_pretrained("Tonic/mistralmed") | |
# peft_model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", trust_remote_code=True) | |
# peft_model = PeftModel.from_pretrained(peft_model, "Tonic/mistralmed") | |
class ChatBot: | |
def __init__(self, system_prompt="You are an expert medical analyst:"): | |
self.system_prompt = system_prompt | |
self.history = [] | |
def predict(self, user_input, system_prompt): | |
# Combine the user's input with the system prompt in Falcon format | |
formatted_input = f"{{{{ {self.system_prompt} }}}}\nUser: {user_input}\nFalcon:" | |
# Encode the formatted input using the tokenizer | |
input_ids = tokenizer.encode(formatted_input, return_tensors="pt", add_special_tokens=False) | |
# Generate a response using the model | |
response = peft_model.generate(input_ids=input_ids, max_length=500, use_cache=False, early_stopping=False, bos_token_id=peft_model.config.bos_token_id, eos_token_id=peft_model.config.eos_token_id, pad_token_id=peft_model.config.eos_token_id, temperature=0.4, do_sample=True) | |
# Decode the generated response to text | |
response_text = tokenizer.decode(response[0], skip_special_tokens=True) | |
# Append the Falcon-like conversation to the history | |
self.history.append(formatted_input) | |
self.history.append(response_text) | |
return response_text | |
bot = ChatBot() | |
title = "👋🏻Welcome to Tonic's GaiaMiniMed Chat🚀" | |
description = "You can use this Space to test out the current model [(Tonic/GaiaMiniMed)](https://huggingface.co/Tonic/GaiaMiniMed) or duplicate this Space and use it locally or on 🤗HuggingFace. [Join me on Discord to build together](https://discord.gg/VqTxc76K3u)." | |
examples = [["What is the proper treatment for buccal herpes?", "You are a medicine and public health expert, you will receive a question, answer the question, and provide a complete answer"]] | |
iface = gr.Interface( | |
fn=bot.predict, | |
title=title, | |
description=description, | |
examples=examples, | |
inputs=["text", "text"], # Take user input and system prompt separately | |
outputs="text", | |
theme="ParityError/Anime" | |
) | |
iface.launch() |