open-strawberry / models.py
pseudotensor's picture
fix secrets handling
046eafc
raw
history blame
19 kB
import ast
import datetime
import os
from typing import List, Dict, Generator
from dotenv import load_dotenv
from tenacity import (
retry,
stop_after_attempt,
wait_random_exponential,
) # for exponential backoff
# Load environment variables from .env file
load_dotenv()
@retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(3))
def anthropic_completion_with_backoff(client, *args, **kwargs):
return client.beta.prompt_caching.messages.create(*args, **kwargs)
def get_anthropic(model: str,
prompt: str,
temperature: float = 0,
max_tokens: int = 4096,
system: str = '',
chat_history: List[Dict] = None,
secrets: Dict = {},
verbose=False) -> \
Generator[dict, None, None]:
model = model.replace('anthropic:', '')
# https://docs.anthropic.com/en/docs/build-with-claude/prompt-caching
import anthropic
clawd_key = secrets.get('ANTHROPIC_API_KEY')
clawd_client = anthropic.Anthropic(api_key=clawd_key) if clawd_key else None
if chat_history is None:
chat_history = []
messages = []
# Add conversation history, removing cache_control from all but the last two user messages
for i, message in enumerate(chat_history):
if message["role"] == "user":
if i >= len(chat_history) - 3: # Last two user messages
messages.append(message)
else:
messages.append({
"role": "user",
"content": [{"type": "text", "text": message["content"][0]["text"]}]
})
else:
messages.append(message)
# Add the new user message
messages.append({
"role": "user",
"content": [
{
"type": "text",
"text": prompt,
"cache_control": {"type": "ephemeral"}
}
]
})
response = anthropic_completion_with_backoff(clawd_client,
model=model,
max_tokens=max_tokens,
temperature=temperature,
system=system,
messages=messages,
stream=True
)
output_tokens = 0
input_tokens = 0
cache_creation_input_tokens = 0
cache_read_input_tokens = 0
for chunk in response:
if chunk.type == "content_block_start":
# This is where we might find usage info in the future
pass
elif chunk.type == "content_block_delta":
yield dict(text=chunk.delta.text)
elif chunk.type == "message_delta":
output_tokens = dict(chunk.usage).get('output_tokens', 0)
elif chunk.type == "message_start":
usage = chunk.message.usage
input_tokens = dict(usage).get('input_tokens', 0)
cache_creation_input_tokens = dict(usage).get('cache_creation_input_tokens', 0)
cache_read_input_tokens = dict(usage).get('cache_read_input_tokens', 0)
else:
if verbose:
print("Unknown chunk type:", chunk.type)
print("Chunk:", chunk)
if verbose:
# After streaming is complete, print the usage information
print(f"Output tokens: {output_tokens}")
print(f"Input tokens: {input_tokens}")
print(f"Cache creation input tokens: {cache_creation_input_tokens}")
print(f"Cache read input tokens: {cache_read_input_tokens}")
yield dict(output_tokens=output_tokens, input_tokens=input_tokens,
cache_creation_input_tokens=cache_creation_input_tokens,
cache_read_input_tokens=cache_read_input_tokens)
@retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(3))
def openai_completion_with_backoff(client, *args, **kwargs):
return client.chat.completions.create(*args, **kwargs)
def get_openai(model: str,
prompt: str,
temperature: float = 0,
max_tokens: int = 4096,
system: str = '',
chat_history: List[Dict] = None,
secrets: Dict = {},
verbose=False) -> Generator[dict, None, None]:
if model.startswith('ollama:'):
model = model.replace('ollama:', '')
openai_key = secrets.get('OLLAMA_OPENAI_API_KEY')
openai_base_url = secrets.get('OLLAMA_OPENAI_BASE_URL', 'http://localhost:11434/v1/')
else:
model = model.replace('openai:', '')
openai_key = secrets.get('OPENAI_API_KEY')
openai_base_url = secrets.get('OPENAI_BASE_URL', 'https://api.openai.com/v1')
from openai import OpenAI
openai_client = OpenAI(api_key=openai_key, base_url=openai_base_url) if openai_key else None
if chat_history is None:
chat_history = []
chat_history_copy = chat_history.copy()
for mi, message in enumerate(chat_history_copy):
if isinstance(message["content"], list):
chat_history_copy[mi]["content"] = message["content"][0]["text"]
chat_history = chat_history_copy
messages = [{"role": "system", "content": system}] + chat_history + [{"role": "user", "content": prompt}]
response = openai_completion_with_backoff(openai_client,
model=model,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
stream=True,
)
output_tokens = 0
input_tokens = 0
for chunk in response:
if chunk.choices[0].delta.content:
yield dict(text=chunk.choices[0].delta.content)
if chunk.usage:
output_tokens = chunk.usage.completion_tokens
input_tokens = chunk.usage.prompt_tokens
if verbose:
print(f"Output tokens: {output_tokens}")
print(f"Input tokens: {input_tokens}")
yield dict(output_tokens=output_tokens, input_tokens=input_tokens)
def openai_messages_to_gemini_history(messages):
"""Converts OpenAI messages to Gemini history format.
Args:
messages: A list of OpenAI messages, each with "role" and "content" keys.
Returns:
A list of dictionaries representing the chat history for Gemini.
"""
history = []
for message in messages:
if isinstance(message["content"], list):
message["content"] = message["content"][0]["text"]
if message["role"] == "user":
history.append({"role": "user", "parts": [{"text": message["content"]}]})
elif message["role"] == "assistant":
history.append({"role": "model", "parts": [{"text": message["content"]}]})
# Optionally handle system messages if needed
# elif message["role"] == "system":
# history.append({"role": "system", "parts": [{"text": message["content"]}]})
return history
@retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(3))
def gemini_send_message_with_backoff(chat, prompt, stream=True):
return chat.send_message(prompt, stream=stream)
@retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(3))
def gemini_generate_content_with_backoff(model, prompt, stream=True):
return model.generate_content(prompt, stream=stream)
def get_google(model: str,
prompt: str,
temperature: float = 0,
max_tokens: int = 4096,
system: str = '',
chat_history: List[Dict] = None,
secrets: Dict = {},
verbose=False) -> Generator[dict, None, None]:
model = model.replace('google:', '').replace('gemini:', '')
import google.generativeai as genai
gemini_key = secrets.get("GEMINI_API_KEY")
genai.configure(api_key=gemini_key)
# Create the model
generation_config = {
"temperature": temperature,
"top_p": 0.95,
"top_k": 64,
"max_output_tokens": max_tokens,
"response_mime_type": "text/plain",
}
if chat_history is None:
chat_history = []
chat_history = chat_history.copy()
chat_history = openai_messages_to_gemini_history(chat_history)
# NOTE: assume want own control. Too many false positives by Google.
from google.generativeai.types import HarmCategory
from google.generativeai.types import HarmBlockThreshold
safety_settings = {
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE,
}
cache = None
# disable cache for now until work into things well
use_cache = False
if use_cache and model == 'gemini-1.5-pro':
from google.generativeai import caching
# Estimate token count (this is a rough estimate, you may need a more accurate method)
estimated_tokens = len(prompt.split()) + sum(len(msg['content'].split()) for msg in chat_history)
if estimated_tokens > 32000:
cache = caching.CachedContent.create(
model=model,
display_name=f'cache_{datetime.datetime.now().isoformat()}',
system_instruction=system,
contents=[prompt] + [msg['content'] for msg in chat_history],
ttl=datetime.timedelta(minutes=5), # Set an appropriate TTL. Short for now for cost savings.
)
gemini_model = genai.GenerativeModel.from_cached_content(cached_content=cache)
else:
gemini_model = genai.GenerativeModel(model_name=model,
generation_config=generation_config,
safety_settings=safety_settings)
else:
gemini_model = genai.GenerativeModel(model_name=model,
generation_config=generation_config,
safety_settings=safety_settings)
if cache:
response = gemini_generate_content_with_backoff(gemini_model, prompt, stream=True)
else:
chat = gemini_model.start_chat(history=chat_history)
response = gemini_send_message_with_backoff(chat, prompt, stream=True)
output_tokens = 0
input_tokens = 0
cache_read_input_tokens = 0
cache_creation_input_tokens = 0
for chunk in response:
if chunk.text:
yield dict(text=chunk.text)
if chunk.usage_metadata:
output_tokens = chunk.usage_metadata.candidates_token_count
input_tokens = chunk.usage_metadata.prompt_token_count
cache_read_input_tokens = chunk.usage_metadata.cached_content_token_count
cache_creation_input_tokens = 0 # This might need to be updated if available in the API
if verbose:
print(f"Output tokens: {output_tokens}")
print(f"Input tokens: {input_tokens}")
print(f"Cached tokens: {cache_read_input_tokens}")
yield dict(output_tokens=output_tokens, input_tokens=input_tokens,
cache_read_input_tokens=cache_read_input_tokens,
cache_creation_input_tokens=cache_creation_input_tokens)
def delete_cache(cache):
if cache:
cache.delete()
print(f"Cache {cache.display_name} deleted.")
else:
print("No cache to delete.")
def get_groq(model: str,
prompt: str,
temperature: float = 0,
max_tokens: int = 4096,
system: str = '',
chat_history: List[Dict] = None,
secrets: Dict = {},
verbose=False) -> Generator[dict, None, None]:
model = model.replace('groq:', '')
from groq import Groq
groq_key = secrets.get("GROQ_API_KEY")
client = Groq(api_key=groq_key)
if chat_history is None:
chat_history = []
chat_history = chat_history.copy()
messages = [{"role": "system", "content": system}] + chat_history + [{"role": "user", "content": prompt}]
stream = openai_completion_with_backoff(client,
messages=messages,
model=model,
temperature=temperature,
max_tokens=max_tokens,
stream=True,
)
output_tokens = 0
input_tokens = 0
for chunk in stream:
if chunk.choices[0].delta.content:
yield dict(text=chunk.choices[0].delta.content)
if chunk.usage:
output_tokens = chunk.usage.completion_tokens
input_tokens = chunk.usage.prompt_tokens
if verbose:
print(f"Output tokens: {output_tokens}")
print(f"Input tokens: {input_tokens}")
yield dict(output_tokens=output_tokens, input_tokens=input_tokens)
def get_openai_azure(model: str,
prompt: str,
temperature: float = 0,
max_tokens: int = 4096,
system: str = '',
chat_history: List[Dict] = None,
secrets: Dict = {},
verbose=False) -> Generator[dict, None, None]:
model = model.replace('azure:', '').replace('openai_azure:', '')
from openai import AzureOpenAI
azure_endpoint = secrets.get("AZURE_OPENAI_ENDPOINT") # e.g. https://project.openai.azure.com
azure_key = secrets.get("AZURE_OPENAI_API_KEY")
azure_deployment = secrets.get("AZURE_OPENAI_DEPLOYMENT") # i.e. deployment name with some models deployed
azure_api_version = secrets.get('AZURE_OPENAI_API_VERSION', '2024-07-01-preview')
assert azure_endpoint is not None, "Azure OpenAI endpoint not set"
assert azure_key is not None, "Azure OpenAI API key not set"
assert azure_deployment is not None, "Azure OpenAI deployment not set"
client = AzureOpenAI(
azure_endpoint=azure_endpoint,
api_key=azure_key,
api_version=azure_api_version,
azure_deployment=azure_deployment,
)
if chat_history is None:
chat_history = []
messages = [{"role": "system", "content": system}] + chat_history + [{"role": "user", "content": prompt}]
response = openai_completion_with_backoff(client,
model=model,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
stream=True
)
output_tokens = 0
input_tokens = 0
for chunk in response:
if chunk.choices and chunk.choices[0].delta.content:
yield dict(text=chunk.choices[0].delta.content)
if chunk.usage:
output_tokens = chunk.usage.completion_tokens
input_tokens = chunk.usage.prompt_tokens
if verbose:
print(f"Output tokens: {output_tokens}")
print(f"Input tokens: {input_tokens}")
yield dict(output_tokens=output_tokens, input_tokens=input_tokens)
def to_list(x):
if x:
try:
ollama_model_list = ast.literal_eval(x)
assert isinstance(ollama_model_list, list)
except:
x = [x]
else:
x = []
return x
def get_model_names(secrets, on_hf_spaces=False):
if not on_hf_spaces:
secrets = os.environ
if secrets.get('ANTHROPIC_API_KEY'):
anthropic_models = ['claude-3-5-sonnet-20240620', 'claude-3-haiku-20240307', 'claude-3-opus-20240229']
else:
anthropic_models = []
if secrets.get('OPENAI_API_KEY'):
if secrets.get('OPENAI_MODEL_NAME'):
openai_models = to_list(secrets.get('OPENAI_MODEL_NAME'))
else:
openai_models = ['gpt-4o', 'gpt-4-turbo-2024-04-09', 'gpt-4o-mini']
else:
openai_models = []
if secrets.get('AZURE_OPENAI_API_KEY'):
if secrets.get('AZURE_OPENAI_MODEL_NAME'):
azure_models = to_list(secrets.get('AZURE_OPENAI_MODEL_NAME'))
else:
azure_models = ['gpt-4o', 'gpt-4-turbo-2024-04-09', 'gpt-4o-mini']
else:
azure_models = []
if secrets.get('GEMINI_API_KEY'):
google_models = ['gemini-1.5-pro-latest', 'gemini-1.5-flash-latest']
else:
google_models = []
if secrets.get('GROQ_API_KEY'):
groq_models = ['llama-3.1-70b-versatile',
'llama-3.1-8b-instant',
'llama3-groq-70b-8192-tool-use-preview',
'llama3-groq-8b-8192-tool-use-preview',
'mixtral-8x7b-32768']
else:
groq_models = []
if secrets.get('OLLAMA_OPENAI_API_KEY'):
ollama_model = os.environ['OLLAMA_OPENAI_MODEL_NAME']
ollama_model = to_list(ollama_model)
else:
ollama_model = []
groq_models = ['groq:' + x for x in groq_models]
azure_models = ['azure:' + x for x in azure_models]
openai_models = ['openai:' + x for x in openai_models]
google_models = ['google:' + x for x in google_models]
anthropic_models = ['anthropic:' + x for x in anthropic_models]
ollama = ['ollama:' + x if 'ollama:' not in x else x for x in ollama_model]
return anthropic_models, openai_models, google_models, groq_models, azure_models, ollama
def get_all_model_names(secrets, on_hf_spaces=False):
anthropic_models, openai_models, google_models, groq_models, azure_models, ollama = get_model_names(secrets,
on_hf_spaces=on_hf_spaces)
return anthropic_models + openai_models + google_models + groq_models + azure_models + ollama
def get_model_api(model: str):
if model.startswith('anthropic:'):
return get_anthropic
elif model.startswith('openai:') or model.startswith('ollama:'):
return get_openai
elif model.startswith('google:'):
return get_google
elif model.startswith('groq:'):
return get_groq
elif model.startswith('azure:'):
return get_openai_azure
else:
raise ValueError(
f"Unsupported model: {model}. Ensure to add prefix (e.g. openai:, google:, groq:, azure:, ollama:, anthropic:)")