File size: 12,210 Bytes
5f2c216
87e5c9c
 
 
 
 
 
 
5f2c216
 
 
87e5c9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f2c216
87e5c9c
 
 
 
 
 
 
 
 
5f2c216
 
 
87e5c9c
5f2c216
 
 
 
 
 
 
 
 
 
 
 
87e5c9c
 
 
5f2c216
87e5c9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f2c216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87e5c9c
 
 
5f2c216
87e5c9c
 
 
5f2c216
 
 
 
7813441
 
 
5f2c216
 
 
 
 
 
 
 
 
87e5c9c
 
 
 
 
 
5f2c216
87e5c9c
5f2c216
87e5c9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import contextlib
import logging
import time
from pathlib import Path

import gradio as gr
import nltk
from cleantext import clean
from doctr.io import DocumentFile
from doctr.models import ocr_predictor
from pdf2text import convert_PDF_to_Text

from summarize import load_model_and_tokenizer, summarize_via_tokenbatches
from utils import load_example_filenames, truncate_word_count

_here = Path(__file__).parent

nltk.download("stopwords")  # TODO=find where this requirement originates from

logging.basicConfig(
    level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)


def proc_submission(
    input_text: str,
    model_size: str,
    num_beams,
    token_batch_length,
    length_penalty,
    repetition_penalty,
    no_repeat_ngram_size,
    max_input_length: int = 768,
):
    """
    proc_submission - a helper function for the gradio module to process submissions

    Args:
        input_text (str): the input text to summarize
        model_size (str): the size of the model to use
        num_beams (int): the number of beams to use
        token_batch_length (int): the length of the token batches to use
        length_penalty (float): the length penalty to use
        repetition_penalty (float): the repetition penalty to use
        no_repeat_ngram_size (int): the no repeat ngram size to use
        max_input_length (int, optional): the maximum input length to use. Defaults to 768.

    Returns:
        str in HTML format, string of the summary, str of score
    """

    settings = {
        "length_penalty": float(length_penalty),
        "repetition_penalty": float(repetition_penalty),
        "no_repeat_ngram_size": int(no_repeat_ngram_size),
        "encoder_no_repeat_ngram_size": 4,
        "num_beams": int(num_beams),
        "min_length": 4,
        "max_length": int(token_batch_length // 4),
        "early_stopping": True,
        "do_sample": False,
    }
    st = time.perf_counter()
    history = {}
    clean_text = clean(input_text, lower=False)
    max_input_length = 2048 if model_size == "base" else max_input_length
    processed = truncate_word_count(clean_text, max_input_length)

    if processed["was_truncated"]:
        tr_in = processed["truncated_text"]
        msg = f"Input text was truncated to {max_input_length} words (based on whitespace)"
        logging.warning(msg)
        history["WARNING"] = msg
    else:
        tr_in = input_text
        msg = None

    _summaries = summarize_via_tokenbatches(
        tr_in,
        model_sm if model_size == "base" else model,
        tokenizer_sm if model_size == "base" else tokenizer,
        batch_length=token_batch_length,
        **settings,
    )
    sum_text = [f"Section {i}: " + s["summary"][0] for i, s in enumerate(_summaries)]
    sum_scores = [
        f" - Section {i}: {round(s['summary_score'],4)}"
        for i, s in enumerate(_summaries)
    ]

    sum_text_out = "\n".join(sum_text)
    history["Summary Scores"] = "<br><br>"
    scores_out = "\n".join(sum_scores)
    rt = round((time.perf_counter() - st) / 60, 2)
    print(f"Runtime: {rt} minutes")
    html = ""
    html += f"<p>Runtime: {rt} minutes on CPU</p>"
    if msg is not None:
        html += f"<h2>WARNING:</h2><hr><b>{msg}</b><br><br>"

    html += ""

    return html, sum_text_out, scores_out


def load_single_example_text(
    example_path: str or Path,
    max_pages=20,
):
    """
    load_single_example - a helper function for the gradio module to load examples
    Returns:
        list of str, the examples
    """
    global name_to_path
    full_ex_path = name_to_path[example_path]
    full_ex_path = Path(full_ex_path)
    if full_ex_path.suffix == ".txt":
        with open(full_ex_path, "r", encoding="utf-8", errors="ignore") as f:
            raw_text = f.read()
        text = clean(raw_text, lower=False)
    elif full_ex_path.suffix == ".pdf":
        logging.info(f"Loading PDF file {full_ex_path}")
        conversion_stats = convert_PDF_to_Text(
            full_ex_path,
            ocr_model=ocr_model,
            max_pages=max_pages,
        )
        text = conversion_stats["converted_text"]
    else:
        logging.error(f"Unknown file type {full_ex_path.suffix}")
        text = "ERROR - check example path"

    return text


def load_uploaded_file(file_obj, max_pages=20):
    """
    load_uploaded_file - process an uploaded file

    Args:
        file_obj (POTENTIALLY list): Gradio file object inside a list

    Returns:
        str, the uploaded file contents
    """

    # file_path = Path(file_obj[0].name)

    # check if mysterious file object is a list
    if isinstance(file_obj, list):
        file_obj = file_obj[0]
    file_path = Path(file_obj.name)
    try:
        if file_path.suffix == ".txt":
            with open(file_path, "r", encoding="utf-8", errors="ignore") as f:
                raw_text = f.read()
            text = clean(raw_text, lower=False)
        elif file_path.suffix == ".pdf":
            logging.info(f"Loading PDF file {file_path}")
            conversion_stats = convert_PDF_to_Text(
                file_path,
                ocr_model=ocr_model,
                max_pages=max_pages,
            )
            text = conversion_stats["converted_text"]
        else:
            logging.error(f"Unknown file type {file_path.suffix}")
            text = "ERROR - check example path"

        return text
    except Exception as e:
        logging.info(f"Trying to load file with path {file_path}, error: {e}")
        return "Error: Could not read file. Ensure that it is a valid text file with encoding UTF-8 if text, and a PDF if PDF."


if __name__ == "__main__":
    logging.info("Starting app instance")

    logging.info("Loading summ models")
    model, tokenizer = load_model_and_tokenizer("pszemraj/pegasus-x-large-book-summary")
    model_sm, tokenizer_sm = load_model_and_tokenizer(
        "pszemraj/long-t5-tglobal-base-16384-book-summary"
    )

    logging.info("Loading OCR model")
    with contextlib.redirect_stdout(None):
        ocr_model = ocr_predictor(
            "db_resnet50",
            "crnn_mobilenet_v3_large",
            pretrained=True,
            assume_straight_pages=True,
        )
    name_to_path = load_example_filenames(_here / "examples")
    logging.info(f"Loaded {len(name_to_path)} examples")
    demo = gr.Blocks()

    with demo:

        gr.Markdown("# Document Summarization with Long-Document Transformers")
        gr.Markdown(
            "TODO: Add a description of the model and how it works, and a link to the paper"
        )
        with gr.Column():

            gr.Markdown("## Load Inputs & Select Parameters")
            gr.Markdown(
                "Enter text below in the text area. The text will be summarized [using the selected parameters](https://huggingface.co/blog/how-to-generate). Optionally load an example below or upload a file."
            )
            with gr.Row():
                model_size = gr.Radio(
                    choices=["base", "large"], label="Model Variant", value="large"
                )
                num_beams = gr.Radio(
                    choices=[2, 3, 4],
                    label="Beam Search: # of Beams",
                    value=2,
                )
            gr.Markdown(
                "_The base model is less performant than the large model, but is faster and will accept up to 2048 words per input (Large model accepts up to 768)._"
            )
            with gr.Row():
                length_penalty = gr.inputs.Slider(
                    minimum=0.5,
                    maximum=1.0,
                    label="length penalty",
                    default=0.7,
                    step=0.05,
                )
                token_batch_length = gr.Radio(
                    choices=[512, 768, 1024],
                    label="token batch length",
                    value=512,
                )

            with gr.Row():
                repetition_penalty = gr.inputs.Slider(
                    minimum=1.0,
                    maximum=5.0,
                    label="repetition penalty",
                    default=3.5,
                    step=0.1,
                )
                no_repeat_ngram_size = gr.Radio(
                    choices=[2, 3, 4],
                    label="no repeat ngram size",
                    value=3,
                )
            with gr.Row():
                example_name = gr.Dropdown(
                    list(name_to_path.keys()),
                    label="Choose an Example",
                )
                load_examples_button = gr.Button(
                    "Load Example",
                )
            input_text = gr.Textbox(
                lines=6,
                label="Input Text (for summarization)",
                placeholder="Enter text to summarize, the text will be cleaned and truncated on Spaces. Narrative, academic (both papers and lecture transcription), and article text work well. May take a bit to generate depending on the input text :)",
            )
            gr.Markdown("Upload your own file:")
            with gr.Row():
                uploaded_file = gr.File(
                    label="Upload a text file",
                    file_count="single",
                    type="file",
                )
                load_file_button = gr.Button("Load Uploaded File")

            gr.Markdown("---")

        with gr.Column():
            gr.Markdown("## Generate Summary")
            gr.Markdown(
                "Summary generation should take approximately 1-2 minutes for most settings."
            )
            summarize_button = gr.Button(
                "Summarize!",
                variant="primary",
            )

            output_text = gr.HTML("<p><em>Output will appear below:</em></p>")
            gr.Markdown("### Summary Output")
            summary_text = gr.Textbox(
                label="Summary", placeholder="The generated summary will appear here"
            )
            gr.Markdown(
                "The summary scores can be thought of as representing the quality of the summary. less-negative numbers (closer to 0) are better:"
            )
            summary_scores = gr.Textbox(
                label="Summary Scores", placeholder="Summary scores will appear here"
            )

            gr.Markdown("---")

        with gr.Column():
            gr.Markdown("## About the Model")
            gr.Markdown(
                "- [This model](https://huggingface.co/pszemraj/led-large-book-summary) is a fine-tuned checkpoint of [allenai/led-large-16384](https://huggingface.co/allenai/led-large-16384) on the [BookSum dataset](https://arxiv.org/abs/2105.08209).The goal was to create a model that can generalize well and is useful in summarizing lots of text in academic and daily usage."
            )
            gr.Markdown(
                "- The two most important parameters-empirically-are the `num_beams` and `token_batch_length`. However, increasing these will also increase the amount of time it takes to generate a summary. The `length_penalty` and `repetition_penalty` parameters are also important for the model to generate good summaries."
            )
            gr.Markdown(
                "- The model can be used with tag [pszemraj/led-large-book-summary](https://huggingface.co/pszemraj/led-large-book-summary). See the model card for details on usage & a notebook for a tutorial."
            )
            gr.Markdown("---")

        load_examples_button.click(
            fn=load_single_example_text, inputs=[example_name], outputs=[input_text]
        )

        load_file_button.click(
            fn=load_uploaded_file, inputs=uploaded_file, outputs=[input_text]
        )

        summarize_button.click(
            fn=proc_submission,
            inputs=[
                input_text,
                model_size,
                num_beams,
                token_batch_length,
                length_penalty,
                repetition_penalty,
                no_repeat_ngram_size,
            ],
            outputs=[output_text, summary_text, summary_scores],
        )

    demo.launch(enable_queue=True, share=True)