Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 6,386 Bytes
fe0e9af 904400a 8dbbc84 fe0e9af 66e7228 fe0e9af 904400a fe0e9af 66e7228 fe0e9af 98a3ea7 fe0e9af 9b3e02d fe0e9af 6fc8143 fe0e9af b9e8529 3247bd6 fe0e9af 98a3ea7 fe0e9af f4f4797 8dbbc84 fe0e9af f4f4797 fe0e9af f4f4797 98a3ea7 66e7228 ecba037 3b66adc fe0e9af ecba037 fe0e9af f4f4797 fe0e9af 8281a66 fe0e9af 7dcd8f3 fe0e9af 66e7228 4aad54f fe0e9af b9e8529 fe0e9af 66e7228 fe0e9af 66e7228 98a3ea7 8dbbc84 afa6ede fe0e9af 24e11fd 98a3ea7 24e11fd df69f18 3b66adc fe0e9af 3ca941f fe0e9af 50085ad afa6ede ecba037 afa6ede ecba037 66e7228 fe0e9af 3ca941f fe0e9af 8dbbc84 9b3e02d 3ca941f 3b66adc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import logging
import re
from pathlib import Path
import gradio as gr
import nltk
from cleantext import clean
from summarize import load_model_and_tokenizer, summarize_via_tokenbatches
_here = Path(__file__).parent
nltk.download("stopwords") # TODO=find where this requirement originates from
import transformers
transformers.logging.set_verbosity_error()
logging.basicConfig()
def truncate_word_count(text, max_words=512):
"""
truncate_word_count - a helper function for the gradio module
Parameters
----------
text : str, required, the text to be processed
max_words : int, optional, the maximum number of words, default=512
Returns
-------
dict, the text and whether it was truncated
"""
# split on whitespace with regex
words = re.split(r"\s+", text)
processed = {}
if len(words) > max_words:
processed["was_truncated"] = True
processed["truncated_text"] = " ".join(words[:max_words])
else:
processed["was_truncated"] = False
processed["truncated_text"] = text
return processed
def proc_submission(
input_text: str,
model_size: str,
num_beams,
token_batch_length,
length_penalty,
repetition_penalty,
no_repeat_ngram_size,
max_input_length: int = 512,
):
"""
proc_submission - a helper function for the gradio module
Parameters
----------
input_text : str, required, the text to be processed
max_input_length : int, optional, the maximum length of the input text, default=512
Returns
-------
str of HTML, the interactive HTML form for the model
"""
settings = {
"length_penalty": length_penalty,
"repetition_penalty": repetition_penalty,
"no_repeat_ngram_size": no_repeat_ngram_size,
"encoder_no_repeat_ngram_size": 4,
"num_beams": num_beams,
"min_length": 4,
"max_length": int(token_batch_length // 4),
"early_stopping": True,
"do_sample": False,
}
history = {}
clean_text = clean(input_text, lower=False)
max_input_length = 1024 if model_size == "base" else max_input_length
processed = truncate_word_count(clean_text, max_input_length)
if processed["was_truncated"]:
tr_in = processed["truncated_text"]
msg = f"Input text was truncated to {max_input_length} words (based on whitespace)"
logging.warning(msg)
history["WARNING"] = msg
else:
tr_in = input_text
history["was_truncated"] = False
_summaries = summarize_via_tokenbatches(
tr_in,
model_sm if model_size == "base" else model,
tokenizer_sm if model_size == "base" else tokenizer,
batch_length=token_batch_length,
**settings,
)
sum_text = [f"Section {i}: " + s["summary"][0] for i, s in enumerate(_summaries)]
sum_scores = [
f"\n - Section {i}: {round(s['summary_score'],4)}"
for i, s in enumerate(_summaries)
]
history["Summary Text"] = "<br>".join(sum_text)
history["Summary Scores"] = "\n".join(sum_scores)
history["Input"] = tr_in
html = ""
for name, item in history.items():
html += (
f"<h2>{name}:</h2><hr><b>{item}</b><br><br>"
if "summary" not in name.lower()
else f"<h2>{name}:</h2><hr>{item}<br><br>"
)
html += ""
return html
def load_examples(examples_dir="examples"):
"""
load_examples - a helper function for the gradio module to load examples
Returns:
list of str, the examples
"""
src = _here / examples_dir
src.mkdir(exist_ok=True)
examples = [f for f in src.glob("*.txt")]
# load the examples into a list
text_examples = []
for example in examples:
with open(example, "r") as f:
text = f.read()
text_examples.append([text, "large", 2, 512, 0.7, 3.5, 3])
return text_examples
if __name__ == "__main__":
model, tokenizer = load_model_and_tokenizer("pszemraj/led-large-book-summary")
model_sm, tokenizer_sm = load_model_and_tokenizer("pszemraj/led-base-book-summary")
title = "Long-Form Summarization: LED & BookSum"
description = "A simple demo of how to use a fine-tuned LED model to summarize long-form text. [This model](https://huggingface.co/pszemraj/led-large-book-summary) is a fine-tuned version of [allenai/led-large-16384](https://huggingface.co/allenai/led-large-16384) on the [BookSum dataset](https://arxiv.org/abs/2105.08209). The goal was to create a model that can generalize well and is useful in summarizing lots of text in academic and daily usage."
gr.Interface(
proc_submission,
inputs=[
gr.inputs.Textbox(
lines=10,
label="input text",
placeholder="Enter text to summarize, the text will be cleaned and truncated on Spaces. Narrative, academic (both papers and lecture transcription), and article text work well. May take a bit to generate depending on the input text :)",
),
gr.inputs.Radio(
choices=["base", "large"], label="model size", default="base"
),
gr.inputs.Slider(
minimum=1, maximum=4, label="num_beams", default=1, step=1
),
gr.inputs.Slider(
minimum=512,
maximum=1024,
label="token_batch_length",
default=512,
step=256,
),
gr.inputs.Slider(
minimum=0.5, maximum=1.1, label="length_penalty", default=0.7, step=0.05
),
gr.inputs.Slider(
minimum=1.0,
maximum=5.0,
label="repetition_penalty",
default=3.5,
step=0.1,
),
gr.inputs.Slider(
minimum=2, maximum=4, label="no_repeat_ngram_size", default=3, step=1
),
],
outputs="html",
examples_per_page=2,
title=title,
description=description,
article="The model can be used with tag [pszemraj/led-large-book-summary](https://huggingface.co/pszemraj/led-large-book-summary). See the model card for details on usage & a notebook for a tutorial.",
examples=load_examples(),
cache_examples=True,
).launch()
|