Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
π reorg UI
Browse filesSigned-off-by: peter szemraj <peterszemraj@gmail.com>
app.py
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
import logging
|
|
|
|
|
2 |
import time
|
3 |
from pathlib import Path
|
4 |
|
@@ -64,7 +66,14 @@ def proc_submission(
|
|
64 |
|
65 |
if processed["was_truncated"]:
|
66 |
tr_in = processed["truncated_text"]
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
logging.warning(msg)
|
69 |
history["WARNING"] = msg
|
70 |
else:
|
@@ -92,7 +101,7 @@ def proc_submission(
|
|
92 |
html = ""
|
93 |
html += f"<p>Runtime: {rt} minutes on CPU</p>"
|
94 |
if msg is not None:
|
95 |
-
html +=
|
96 |
|
97 |
html += ""
|
98 |
|
@@ -152,7 +161,7 @@ if __name__ == "__main__":
|
|
152 |
name_to_path = load_example_filenames(_here / "examples")
|
153 |
logging.info(f"Loaded {len(name_to_path)} examples")
|
154 |
demo = gr.Blocks()
|
155 |
-
|
156 |
with demo:
|
157 |
|
158 |
gr.Markdown("# Long-Form Summarization: LED & BookSum")
|
@@ -167,66 +176,37 @@ if __name__ == "__main__":
|
|
167 |
)
|
168 |
with gr.Row():
|
169 |
model_size = gr.Radio(
|
170 |
-
choices=["base", "large"], label="Model Variant", value="
|
171 |
)
|
172 |
num_beams = gr.Radio(
|
173 |
choices=[2, 3, 4],
|
174 |
label="Beam Search: # of Beams",
|
175 |
value=2,
|
176 |
)
|
177 |
-
gr.Markdown(
|
178 |
-
"_The base model is less performant than the large model, but is faster and will accept up to 2048 words per input (Large model accepts up to 768)._"
|
179 |
-
)
|
180 |
-
with gr.Row():
|
181 |
-
length_penalty = gr.inputs.Slider(
|
182 |
-
minimum=0.5,
|
183 |
-
maximum=1.0,
|
184 |
-
label="length penalty",
|
185 |
-
default=0.7,
|
186 |
-
step=0.05,
|
187 |
-
)
|
188 |
-
token_batch_length = gr.Radio(
|
189 |
-
choices=[512, 768, 1024],
|
190 |
-
label="token batch length",
|
191 |
-
value=512,
|
192 |
-
)
|
193 |
-
|
194 |
-
with gr.Row():
|
195 |
-
repetition_penalty = gr.inputs.Slider(
|
196 |
-
minimum=1.0,
|
197 |
-
maximum=5.0,
|
198 |
-
label="repetition penalty",
|
199 |
-
default=3.5,
|
200 |
-
step=0.1,
|
201 |
-
)
|
202 |
-
no_repeat_ngram_size = gr.Radio(
|
203 |
-
choices=[2, 3, 4],
|
204 |
-
label="no repeat ngram size",
|
205 |
-
value=3,
|
206 |
-
)
|
207 |
with gr.Row():
|
208 |
example_name = gr.Dropdown(
|
209 |
-
|
210 |
-
label="
|
|
|
211 |
)
|
212 |
-
load_examples_button = gr.Button(
|
213 |
-
"Load Example",
|
214 |
-
)
|
215 |
-
input_text = gr.Textbox(
|
216 |
-
lines=6,
|
217 |
-
label="Input Text (for summarization)",
|
218 |
-
placeholder="Enter text to summarize, the text will be cleaned and truncated on Spaces. Narrative, academic (both papers and lecture transcription), and article text work well. May take a bit to generate depending on the input text :)",
|
219 |
-
)
|
220 |
-
gr.Markdown("Upload your own file:")
|
221 |
-
with gr.Row():
|
222 |
uploaded_file = gr.File(
|
223 |
-
label="Upload
|
224 |
file_count="single",
|
225 |
type="file",
|
226 |
)
|
227 |
-
|
228 |
-
|
229 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
|
231 |
with gr.Column():
|
232 |
gr.Markdown("## Generate Summary")
|
@@ -250,10 +230,39 @@ if __name__ == "__main__":
|
|
250 |
label="Summary Scores", placeholder="Summary scores will appear here"
|
251 |
)
|
252 |
|
253 |
-
|
254 |
|
255 |
with gr.Column():
|
256 |
-
gr.Markdown("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
gr.Markdown(
|
258 |
"- [This model](https://huggingface.co/pszemraj/led-large-book-summary) is a fine-tuned checkpoint of [allenai/led-large-16384](https://huggingface.co/allenai/led-large-16384) on the [BookSum dataset](https://arxiv.org/abs/2105.08209).The goal was to create a model that can generalize well and is useful in summarizing lots of text in academic and daily usage."
|
259 |
)
|
|
|
1 |
import logging
|
2 |
+
import random
|
3 |
+
import re
|
4 |
import time
|
5 |
from pathlib import Path
|
6 |
|
|
|
66 |
|
67 |
if processed["was_truncated"]:
|
68 |
tr_in = processed["truncated_text"]
|
69 |
+
# create elaborate HTML warning
|
70 |
+
input_wc = re.split(r"\s+", input_text)
|
71 |
+
msg = f"""
|
72 |
+
<div style="background-color: #FFA500; color: white; padding: 20px;">
|
73 |
+
<h3>Warning</h3>
|
74 |
+
<p>Input text was truncated to {max_input_length} words. That's about {100*max_input_length/len(input_wc):.2f}% of the submission.</p>
|
75 |
+
</div>
|
76 |
+
"""
|
77 |
logging.warning(msg)
|
78 |
history["WARNING"] = msg
|
79 |
else:
|
|
|
101 |
html = ""
|
102 |
html += f"<p>Runtime: {rt} minutes on CPU</p>"
|
103 |
if msg is not None:
|
104 |
+
html += msg
|
105 |
|
106 |
html += ""
|
107 |
|
|
|
161 |
name_to_path = load_example_filenames(_here / "examples")
|
162 |
logging.info(f"Loaded {len(name_to_path)} examples")
|
163 |
demo = gr.Blocks()
|
164 |
+
_examples = list(name_to_path.keys())
|
165 |
with demo:
|
166 |
|
167 |
gr.Markdown("# Long-Form Summarization: LED & BookSum")
|
|
|
176 |
)
|
177 |
with gr.Row():
|
178 |
model_size = gr.Radio(
|
179 |
+
choices=["base", "large"], label="Model Variant", value="base"
|
180 |
)
|
181 |
num_beams = gr.Radio(
|
182 |
choices=[2, 3, 4],
|
183 |
label="Beam Search: # of Beams",
|
184 |
value=2,
|
185 |
)
|
186 |
+
gr.Markdown("Select an example, or upload a `.txt` file")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
with gr.Row():
|
188 |
example_name = gr.Dropdown(
|
189 |
+
_examples,
|
190 |
+
label="Examples",
|
191 |
+
value=random.choice(_examples),
|
192 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
uploaded_file = gr.File(
|
194 |
+
label="File Upload",
|
195 |
file_count="single",
|
196 |
type="file",
|
197 |
)
|
198 |
+
with gr.Row():
|
199 |
+
input_text = gr.Textbox(
|
200 |
+
lines=4,
|
201 |
+
label="Input Text (for summarization)",
|
202 |
+
placeholder="Enter text to summarize, the text will be cleaned and truncated on Spaces. Narrative, academic (both papers and lecture transcription), and article text work well. May take a bit to generate depending on the input text :)",
|
203 |
+
)
|
204 |
+
with gr.Column(min_width=100, scale=0.5):
|
205 |
+
load_examples_button = gr.Button(
|
206 |
+
"Load Example",
|
207 |
+
)
|
208 |
+
load_file_button = gr.Button("Upload File")
|
209 |
+
gr.Markdown("---")
|
210 |
|
211 |
with gr.Column():
|
212 |
gr.Markdown("## Generate Summary")
|
|
|
230 |
label="Summary Scores", placeholder="Summary scores will appear here"
|
231 |
)
|
232 |
|
233 |
+
gr.Markdown("---")
|
234 |
|
235 |
with gr.Column():
|
236 |
+
gr.Markdown("### Advanced Settings")
|
237 |
+
with gr.Row():
|
238 |
+
length_penalty = gr.inputs.Slider(
|
239 |
+
minimum=0.5,
|
240 |
+
maximum=1.0,
|
241 |
+
label="length penalty",
|
242 |
+
default=0.7,
|
243 |
+
step=0.05,
|
244 |
+
)
|
245 |
+
token_batch_length = gr.Radio(
|
246 |
+
choices=[512, 768, 1024, 1536],
|
247 |
+
label="token batch length",
|
248 |
+
value=1024,
|
249 |
+
)
|
250 |
+
|
251 |
+
with gr.Row():
|
252 |
+
repetition_penalty = gr.inputs.Slider(
|
253 |
+
minimum=1.0,
|
254 |
+
maximum=5.0,
|
255 |
+
label="repetition penalty",
|
256 |
+
default=3.5,
|
257 |
+
step=0.1,
|
258 |
+
)
|
259 |
+
no_repeat_ngram_size = gr.Radio(
|
260 |
+
choices=[2, 3, 4],
|
261 |
+
label="no repeat ngram size",
|
262 |
+
value=3,
|
263 |
+
)
|
264 |
+
with gr.Column():
|
265 |
+
gr.Markdown("### About the Model")
|
266 |
gr.Markdown(
|
267 |
"- [This model](https://huggingface.co/pszemraj/led-large-book-summary) is a fine-tuned checkpoint of [allenai/led-large-16384](https://huggingface.co/allenai/led-large-16384) on the [BookSum dataset](https://arxiv.org/abs/2105.08209).The goal was to create a model that can generalize well and is useful in summarizing lots of text in academic and daily usage."
|
268 |
)
|