File size: 3,230 Bytes
60af901
663f046
8b62553
 
 
 
60af901
4298bfe
 
8b62553
4298bfe
 
 
 
8b62553
4298bfe
 
 
 
 
 
 
663f046
4298bfe
 
663f046
4298bfe
 
 
 
 
60af901
8b62553
4298bfe
 
 
8b62553
60af901
8b62553
4298bfe
 
 
8b62553
60af901
8b62553
 
4298bfe
8b62553
 
4298bfe
8b62553
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdb369b
 
23bdd0d
 
8b62553
 
 
 
ffb5497
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import spaces
import torch
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import spacy

@spaces.GPU(duration=30)
class ModelSingleton:
    _instance = None

    def __new__(cls, *args, **kwargs):
        if not cls._instance:
            cls._instance = super(ModelSingleton, cls).__new__(cls, *args, **kwargs)
        return cls._instance

    def __init__(self):
        if not hasattr(self, 'initialized'):
            self.nlp_en = spacy.load("en_core_web_sm")
            self.nlp_it = spacy.load("it_core_news_sm")

            # Load translation models and tokenizers
            self.tokenizer_en_it = AutoTokenizer.from_pretrained("LeonardPuettmann/Quadrifoglio-mt-en-it")
            self.model_en_it = AutoModelForSeq2SeqLM.from_pretrained("LeonardPuettmann/Quadrifoglio-mt-en-it", torch_dtype=torch.bfloat16)

            self.tokenizer_it_en = AutoTokenizer.from_pretrained("LeonardPuettmann/Quadrifoglio-mt-it-en")
            self.model_it_en = AutoModelForSeq2SeqLM.from_pretrained("LeonardPuettmann/Quadrifoglio-mt-it-en", torch_dtype=torch.bfloat16)

            self.initialized = True

model_singleton = ModelSingleton()

@spaces.GPU(duration=30)
def generate_response_en_it(input_text):
    input_ids = model_singleton.tokenizer_en_it("translate English to Italian: " + input_text, return_tensors="pt").input_ids
    output = model_singleton.model_en_it.generate(input_ids, max_new_tokens=256)
    return model_singleton.tokenizer_en_it.decode(output[0], skip_special_tokens=True)

@spaces.GPU(duration=30)
def generate_response_it_en(input_text):
    input_ids = model_singleton.tokenizer_it_en("translate Italian to English: " + input_text, return_tensors="pt").input_ids
    output = model_singleton.model_it_en.generate(input_ids, max_new_tokens=256)
    return model_singleton.tokenizer_it_en.decode(output[0], skip_special_tokens=True)

@spaces.GPU(duration=30)
def translate_text(input_text, direction):
    if direction == "en-it":
        nlp = model_singleton.nlp_en
        generate_response = generate_response_en_it
    elif direction == "it-en":
        nlp = model_singleton.nlp_it
        generate_response = generate_response_it_en
    else:
        return "Invalid direction selected."

    doc = nlp(input_text)
    sentences = [sent.text for sent in doc.sents]

    sentence_translations = []
    for sentence in sentences:
        sentence_translation = generate_response(sentence)
        sentence_translations.append(sentence_translation)

    full_translation = " ".join(sentence_translations)
    return full_translation

# Create the Gradio interface
iface = gr.Interface(
    fn=translate_text,
    inputs=[gr.Textbox(lines=5, placeholder="Enter text to translate...", label="Input Text"),
            gr.Dropdown(choices=["en-it", "it-en"], label="Translation Direction")],
    outputs=gr.Textbox(lines=5, label="Translation"),
    description="This space is running on ZERO GPU. Initilization might take a couple of seconds the first time. This spaces uses the Quadrifoglio models for it-en and en-it text translation tasks."
)

# Launch the interface
iface.launch()