Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,108 Bytes
ffb5497 8b62553 4298bfe 8b62553 4298bfe 8b62553 4298bfe ffb5497 4298bfe ffb5497 4298bfe ffb5497 8b62553 4298bfe 8b62553 ffb5497 8b62553 4298bfe 8b62553 4298bfe 8b62553 4298bfe 8b62553 bdb369b 23bdd0d 8b62553 ffb5497 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
import spaces
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import spacy
class ModelSingleton:
_instance = None
def __new__(cls, *args, **kwargs):
if not cls._instance:
cls._instance = super(ModelSingleton, cls).__new__(cls, *args, **kwargs)
return cls._instance
def __init__(self):
if not hasattr(self, 'initialized'):
self.nlp_en = spacy.load("en_core_web_sm")
self.nlp_it = spacy.load("it_core_news_sm")
# Load translation models and tokenizers
self.tokenizer_en_it = AutoTokenizer.from_pretrained("LeonardPuettmann/Quadrifoglio-mt-en-it")
self.model_en_it = AutoModelForSeq2SeqLM.from_pretrained("LeonardPuettmann/Quadrifoglio-mt-en-it")
self.tokenizer_it_en = AutoTokenizer.from_pretrained("LeonardPuettmann/Quadrifoglio-mt-it-en")
self.model_it_en = AutoModelForSeq2SeqLM.from_pretrained("LeonardPuettmann/Quadrifoglio-mt-it-en")
self.initialized = True
model_singleton = ModelSingleton()
@spaces.GPU(duration=30)
def generate_response_en_it(input_text):
input_ids = model_singleton.tokenizer_en_it("translate English to Italian: " + input_text, return_tensors="pt").input_ids
output = model_singleton.model_en_it.generate(input_ids, max_new_tokens=256)
return model_singleton.tokenizer_en_it.decode(output[0], skip_special_tokens=True)
@spaces.GPU(duration=30)
def generate_response_it_en(input_text):
input_ids = model_singleton.tokenizer_it_en("translate Italian to English: " + input_text, return_tensors="pt").input_ids
output = model_singleton.model_it_en.generate(input_ids, max_new_tokens=256)
return model_singleton.tokenizer_it_en.decode(output[0], skip_special_tokens=True)
def translate_text(input_text, direction):
if direction == "en-it":
nlp = model_singleton.nlp_en
generate_response = generate_response_en_it
elif direction == "it-en":
nlp = model_singleton.nlp_it
generate_response = generate_response_it_en
else:
return "Invalid direction selected."
doc = nlp(input_text)
sentences = [sent.text for sent in doc.sents]
sentence_translations = []
for sentence in sentences:
sentence_translation = generate_response(sentence)
sentence_translations.append(sentence_translation)
full_translation = " ".join(sentence_translations)
return full_translation
# Create the Gradio interface
iface = gr.Interface(
fn=translate_text,
inputs=[gr.Textbox(lines=5, placeholder="Enter text to translate...", label="Input Text"),
gr.Dropdown(choices=["en-it", "it-en"], label="Translation Direction")],
outputs=gr.Textbox(lines=5, label="Translation"),
description="This space is running on ZERO GPU. Initilization might take a couple of seconds the first time. This spaces uses the Quadrifoglio models for it-en and en-it text translation tasks."
)
# Launch the interface
iface.launch()
|