import spaces import torch import gradio as gr from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import spacy class ModelSingleton: _instance = None def __new__(cls, *args, **kwargs): if not cls._instance: cls._instance = super(ModelSingleton, cls).__new__(cls, *args, **kwargs) return cls._instance def __init__(self): if not hasattr(self, 'initialized'): self.nlp_en = spacy.load("en_core_web_sm") self.nlp_it = spacy.load("it_core_news_sm") # Load translation models and tokenizers self.tokenizer_en_it = AutoTokenizer.from_pretrained("LeonardPuettmann/Quadrifoglio-mt-en-it") self.model_en_it = AutoModelForSeq2SeqLM.from_pretrained("LeonardPuettmann/Quadrifoglio-mt-en-it", torch_dtype=torch.bfloat16) self.tokenizer_it_en = AutoTokenizer.from_pretrained("LeonardPuettmann/Quadrifoglio-mt-it-en") self.model_it_en = AutoModelForSeq2SeqLM.from_pretrained("LeonardPuettmann/Quadrifoglio-mt-it-en", torch_dtype=torch.bfloat16) self.initialized = True model_singleton = ModelSingleton() @spaces.GPU(duration=30) def generate_response_en_it(input_text): input_ids = model_singleton.tokenizer_en_it("translate English to Italian: " + input_text, return_tensors="pt").input_ids output = model_singleton.model_en_it.generate(input_ids, max_new_tokens=256) return model_singleton.tokenizer_en_it.decode(output[0], skip_special_tokens=True) @spaces.GPU(duration=30) def generate_response_it_en(input_text): input_ids = model_singleton.tokenizer_it_en("translate Italian to English: " + input_text, return_tensors="pt").input_ids output = model_singleton.model_it_en.generate(input_ids, max_new_tokens=256) return model_singleton.tokenizer_it_en.decode(output[0], skip_special_tokens=True) @spaces.GPU(duration=30) def translate_text(input_text, direction): if direction == "en-it": nlp = model_singleton.nlp_en generate_response = generate_response_en_it elif direction == "it-en": nlp = model_singleton.nlp_it generate_response = generate_response_it_en else: return "Invalid direction selected." doc = nlp(input_text) sentences = [sent.text for sent in doc.sents] sentence_translations = [] for sentence in sentences: sentence_translation = generate_response(sentence) sentence_translations.append(sentence_translation) full_translation = " ".join(sentence_translations) return full_translation # Create the Gradio interface iface = gr.Interface( fn=translate_text, inputs=[gr.Textbox(lines=5, placeholder="Enter text to translate...", label="Input Text"), gr.Dropdown(choices=["en-it", "it-en"], label="Translation Direction")], outputs=gr.Textbox(lines=5, label="Translation"), description="This space is running on ZERO GPU. Initilization might take a couple of seconds the first time. This spaces uses the Quadrifoglio models for it-en and en-it text translation tasks." ) # Launch the interface iface.launch()