import gradio as gr from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import spacy # Load spaCy models nlp_en = spacy.load("en_core_web_sm") nlp_it = spacy.load("it_core_news_sm") # Load translation models and tokenizers tokenizer_en_it = AutoTokenizer.from_pretrained("LeonardPuettmann/Quadrifoglio-mt-en-it") model_en_it = AutoModelForSeq2SeqLM.from_pretrained("LeonardPuettmann/Quadrifoglio-mt-en-it") tokenizer_it_en = AutoTokenizer.from_pretrained("LeonardPuettmann/Quadrifoglio-mt-it-en") model_it_en = AutoModelForSeq2SeqLM.from_pretrained("LeonardPuettmann/Quadrifoglio-mt-it-en") def generate_response_en_it(input_text): input_ids = tokenizer_en_it("translate English to Italian: " + input_text, return_tensors="pt").input_ids output = model_en_it.generate(input_ids, max_new_tokens=256) return tokenizer_en_it.decode(output[0], skip_special_tokens=True) def generate_response_it_en(input_text): input_ids = tokenizer_it_en("translate Italian to English: " + input_text, return_tensors="pt").input_ids output = model_it_en.generate(input_ids, max_new_tokens=256) return tokenizer_it_en.decode(output[0], skip_special_tokens=True) def translate_text(input_text, direction): if direction == "en-it": nlp = nlp_en generate_response = generate_response_en_it elif direction == "it-en": nlp = nlp_it generate_response = generate_response_it_en else: return "Invalid direction selected." doc = nlp(input_text) sentences = [sent.text for sent in doc.sents] sentence_translations = [] for sentence in sentences: sentence_translation = generate_response(sentence) sentence_translations.append(sentence_translation) full_translation = " ".join(sentence_translations) return full_translation # Create the Gradio interface iface = gr.Interface( fn=translate_text, inputs=[gr.Textbox(lines=5, placeholder="Enter text to translate..."), gr.Dropdown(choices=["en-it", "it-en"], label="Translation Direction")], outputs=gr.Textbox(lines=5, label="Translation") ) # Launch the interface iface.launch()