ethanweber commited on
Commit
8908918
1 Parent(s): b16aa33
Files changed (1) hide show
  1. app.py +32 -4
app.py CHANGED
@@ -11,14 +11,25 @@ def predict(input_img):
11
 
12
  _HEADER_ = '''
13
  <h2>Toon3D: Seeing Cartoons from a New Perspective</h2>
14
- **Toon3D** lifts cartoons into 3D via aligning and warping backprojected monocular depth predictions..
15
  Project page @ <a href='https://toon3d.studio/' target='_blank'>https://toon3d.studio/</a>
16
 
17
  **Important Notes:**
18
- - Our demo can export a .obj mesh with vertex colors or a .glb mesh now. If you prefer to export a .obj mesh with a **texture map**, please refer to our <a href='https://github.com/TencentARC/InstantMesh?tab=readme-ov-file#running-with-command-line' target='_blank'>Github Repo</a>.
19
- - The 3D mesh generation results highly depend on the quality of generated multi-view images. Please try a different **seed value** if the result is unsatisfying (Default: 42).
20
  '''
21
 
 
 
 
 
 
 
 
 
 
 
 
22
  gradio_app = gr.Interface(
23
  predict,
24
  inputs=gr.Image(label="Select hot dog candidate", sources=['upload', 'webcam'], type="pil"),
@@ -31,7 +42,24 @@ with gr.Blocks() as demo:
31
  with gr.Row(variant="panel"):
32
  with gr.Column():
33
  with gr.Row():
34
- input = gr.File(file_count="directory")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
  if __name__ == "__main__":
37
  demo.launch()
 
11
 
12
  _HEADER_ = '''
13
  <h2>Toon3D: Seeing Cartoons from a New Perspective</h2>
14
+ Toon3D lifts cartoons into 3D via aligning and warping backprojected monocular depth predictions.<br>
15
  Project page @ <a href='https://toon3d.studio/' target='_blank'>https://toon3d.studio/</a>
16
 
17
  **Important Notes:**
18
+ - TODO 1
19
+ - TODO 2
20
  '''
21
 
22
+ def check_input_images(input_images):
23
+ if input_images is None:
24
+ raise gr.Error("No images uploaded!")
25
+
26
+ def process_images(input_images):
27
+
28
+ for image in input_images:
29
+ print(image)
30
+
31
+ return input_images
32
+
33
  gradio_app = gr.Interface(
34
  predict,
35
  inputs=gr.Image(label="Select hot dog candidate", sources=['upload', 'webcam'], type="pil"),
 
42
  with gr.Row(variant="panel"):
43
  with gr.Column():
44
  with gr.Row():
45
+ input_images = gr.File(label="Upload Images", file_count="multiple", file_types=[".jpg", "jpeg", "png"])
46
+ with gr.Row():
47
+ process_data_button = gr.Button("Process Data", elem_id="process_data", variant="primary")
48
+ with gr.Row():
49
+ processed_data_zip = gr.File(label="Processed Data", file_count="single", file_types=[".zip"])
50
+ with gr.Column():
51
+ with gr.Row():
52
+ labeled_data = gr.File(label="Labeled Points", file_count="single", file_types=[".json"])
53
+
54
+
55
+
56
+ # mv_images = gr.State()
57
+
58
+ process_data_button.click(fn=check_input_images, inputs=[input_images]).success(
59
+ fn=process_images,
60
+ inputs=[input_images],
61
+ outputs=[processed_data_zip],
62
+ )
63
 
64
  if __name__ == "__main__":
65
  demo.launch()