ethanweber commited on
Commit
95f29af
1 Parent(s): 0080de0

file upload

Browse files
Files changed (1) hide show
  1. app.py +19 -2
app.py CHANGED
@@ -7,14 +7,31 @@ pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotd
7
  @spaces.GPU
8
  def predict(input_img):
9
  predictions = pipeline(input_img)
10
- return input_img, {p["label"]: p["score"] for p in predictions}
 
 
 
 
 
 
 
 
 
 
11
 
12
  gradio_app = gr.Interface(
13
  predict,
14
  inputs=gr.Image(label="Select hot dog candidate", sources=['upload', 'webcam'], type="pil"),
15
  outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)],
16
- title="Hot Dog? Or Not?",
17
  )
18
 
 
 
 
 
 
 
 
19
  if __name__ == "__main__":
20
  gradio_app.launch()
 
7
  @spaces.GPU
8
  def predict(input_img):
9
  predictions = pipeline(input_img)
10
+ return input_img, {p["label"]: p["score"] for p in predictions}
11
+
12
+ _HEADER_ = '''
13
+ <h2>Toon3D: Seeing Cartoons from a New Perspective</h2>
14
+ **Toon3D** lifts cartoons into 3D via aligning and warping backprojected monocular depth predictions..
15
+ Project page @ <a href='https://toon3d.studio/' target='_blank'>https://toon3d.studio/</a>
16
+
17
+ **Important Notes:**
18
+ - Our demo can export a .obj mesh with vertex colors or a .glb mesh now. If you prefer to export a .obj mesh with a **texture map**, please refer to our <a href='https://github.com/TencentARC/InstantMesh?tab=readme-ov-file#running-with-command-line' target='_blank'>Github Repo</a>.
19
+ - The 3D mesh generation results highly depend on the quality of generated multi-view images. Please try a different **seed value** if the result is unsatisfying (Default: 42).
20
+ '''
21
 
22
  gradio_app = gr.Interface(
23
  predict,
24
  inputs=gr.Image(label="Select hot dog candidate", sources=['upload', 'webcam'], type="pil"),
25
  outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)],
26
+ title="Toon3D",
27
  )
28
 
29
+ with gr.Blocks() as demo:
30
+ gr.Markdown(_HEADER_)
31
+ with gr.Row(variant="panel"):
32
+ with gr.Column():
33
+ with gr.Row():
34
+ input = gr.File(file_count="directory")
35
+
36
  if __name__ == "__main__":
37
  gradio_app.launch()