import spaces import gradio as gr from transformers import pipeline pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog") @spaces.GPU def predict(input_img): predictions = pipeline(input_img) return input_img, {p["label"]: p["score"] for p in predictions} _HEADER_ = '''

Toon3D: Seeing Cartoons from a New Perspective

Toon3D lifts cartoons into 3D via aligning and warping backprojected monocular depth predictions.
Project page @ https://toon3d.studio/ **Important Notes:** - TODO 1 - TODO 2 ''' def check_input_images(input_images): if input_images is None: raise gr.Error("No images uploaded!") def process_images(input_images): for image in input_images: print(image) return input_images gradio_app = gr.Interface( predict, inputs=gr.Image(label="Select hot dog candidate", sources=['upload', 'webcam'], type="pil"), outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)], title="Toon3D", ) with gr.Blocks() as demo: gr.Markdown(_HEADER_) with gr.Row(variant="panel"): with gr.Column(): with gr.Row(): input_images = gr.File(label="Upload Images", file_count="multiple", file_types=[".jpg", "jpeg", "png"]) with gr.Row(): process_data_button = gr.Button("Process Data", elem_id="process_data", variant="primary") with gr.Row(): processed_data_zip = gr.File(label="Processed Data", file_count="single", file_types=[".zip"]) with gr.Column(): with gr.Row(): labeled_data = gr.File(label="Labeled Points", file_count="single", file_types=[".json"]) # mv_images = gr.State() process_data_button.click(fn=check_input_images, inputs=[input_images]).success( fn=process_images, inputs=[input_images], outputs=[processed_data_zip], ) if __name__ == "__main__": demo.launch()