Spaces:
Build error
Build error
File size: 6,381 Bytes
35d31f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import base64
import json
from prompts import *
import ast
from bs4 import BeautifulSoup
from semantic_retrieval import *
from llm_query_api import *
import base64
from mimetypes import guess_type
class InputInstance:
def __init__(self, id=None, html_table=None, question=None, answer=None):
self.id = id
self.html_table = html_table
self.question = question
self.answer = answer
return
class MATSA:
def __init__(self, llm = "gpt-4"):
self.llm = llm
self.llm_query_api = LLMQueryAPI() #LLMProxyQueryAPI()
pass
def table_formatting_agent(self, html_table = None, table_image_path = None):
def local_image_to_data_url(image_path):
mime_type, _ = guess_type(image_path)
if mime_type is None:
mime_type = 'application/octet-stream'
with open(image_path, "rb") as image_file:
base64_encoded_data = base64.b64encode(image_file.read()).decode('utf-8')
return f"data:{mime_type};base64,{base64_encoded_data}"
if table_image_path != None:
tesseract = TesseractOCR()
pdf = PDF(src=table_image_path, pages=[0, 0])
extracted_tables = pdf.extract_tables(ocr=tesseract,
implicit_rows=True,
borderless_tables=True,)
html_table = extracted_tables[0][0].html_repr()
table_image_data_url = local_image_to_data_url(table_image_path)
query = table_image_to_html_prompt.replace("{{html_table}}", html_table)
html_table = llm_query_api.get_llm_response("gpt-4V", query, table_image_data_url)
soup = BeautifulSoup(html_table, 'html.parser')
tr_tags = soup.find_all('tr')
for i, tr_tag in enumerate(tr_tags):
tr_tag['id'] = f"row-{i + 1}" # Assign unique ID using 'row-i' format
if i == 0:
th_tags = tr_tag.find_all('th')
for i, th_tag in enumerate(th_tags):
th_tag['id'] = f"col-{i + 1}" # Assign unique ID using 'col-i' format
return str(soup)
def description_augmentation_agent(self, html_table):
query = col_description_prompt.replace("{{html_table}}", str(html_table))
col_augmented_html_table = self.llm_query_api.get_llm_response(self.llm, query)
query = row_description_prompt.replace("{{html_table}}", str(col_augmented_html_table))
row_augmented_html_table = self.llm_query_api.get_llm_response(self.llm, query)
query = trend_description_prompt.replace("{{html_table}}", str(row_augmented_html_table))
trend_augmented_html_table = self.llm_query_api.get_llm_response(self.llm, query)
return trend_augmented_html_table
def answer_decomposition_agent(self, answer):
prompt = answer_decomposition_prompt
query = prompt.replace("{{answer}}", answer)
res = self.llm_query_api.get_llm_response(self.llm, query)
res = ast.literal_eval(res)
if isinstance(res, list):
return res
else:
return None
def semantic_retreival_agent(self, html_table, fact_list, topK=5):
attributed_html_table, row_attribution_ids, col_attribution_ids = get_embedding_attribution(html_table, fact_list, topK)
return attributed_html_table, row_attribution_ids, col_attribution_ids
def sufficiency_attribution_agent(self, fact_list, attributed_html_table):
fact_verification_function = {}
fact_verification_list = []
for i in range(len(fact_list)):
fact=fact_list[i]
fxn = {}
fxn["Fact " + str(i+1)+":"] = str(fact)
# fxn["Verified"] = "..."
fact_verification_list.append(fxn)
fact_verification_function["List of Fact"] = fact_verification_list
fact_verification_function["Row Citations"] = "[..., ..., ...]"
fact_verification_function["Column Citations"] = "[..., ..., ...]"
fact_verification_function["Explanation"] = "..."
fact_verification_function_string = json.dumps(fact_verification_function)
query = functional_attribution_prompt.replace("{{attributed_html_table}}", str(attributed_html_table)).replace("{{fact_verification_function}}", fact_verification_function_string)
attribution_fxn = self.llm_query_api.get_llm_response(self.llm, query)
attribution_fxn = attribution_fxn.replace("```json", "")
attribution_fxn = attribution_fxn.replace("```", "")
print(attribution_fxn)
attribution_fxn = json.loads(attribution_fxn)
if isinstance(attribution_fxn, dict):
return attribution_fxn
else:
return None
if __name__ == '__main__':
html_table = """<table>
<tr>
<th rowspan="1">Sr. Number</th>
<th colspan="3">Types</th>
<th rowspan="1">Remark</th>
</tr>
<tr>
<th> </th>
<th>A</th>
<th>B</th>
<th>C</th>
<th> </th>
</tr>
<tr>
<td>1</td>
<td>Mitten</td>
<td>Kity</td>
<td>Teddy</td>
<td>Names of cats</td>
</tr>
<tr>
<td>1</td>
<td>Tommy</td>
<td>Rudolph</td>
<td>Jerry</td>
<td>Names of dogs</td>
</tr>
</table>"""
answer = "Tommy is a dog but Mitten is a cat."
x = InputInstance(html_table=html_table, answer=answer)
matsa_agent = MATSA()
x_reformulated = matsa_agent.table_formatting_agent(x.html_table)
print(x_reformulated)
x_descriptions = matsa_agent.description_augmentation_agent(x_reformulated)
print(x_descriptions)
fact_list = matsa_agent.answer_decomposition_agent(x.answer)
print(fact_list)
attributed_html_table, row_attribution_ids, col_attribution_ids = matsa_agent.semantic_retreival_agent(x_descriptions, fact_list)
print(attributed_html_table)
attribution_fxn = matsa_agent.sufficiency_attribution_agent(fact_list, attributed_html_table)
print(attribution_fxn)
row_attribution_set = attribution_fxn["Row Citations"]
col_attribution_set = attribution_fxn["Column Citations"]
print(row_attribution_set)
print(col_attribution_set)
|