Matsa-demo / demo.py
puneetm's picture
Upload folder using huggingface_hub
35d31f5 verified
raw
history blame
8.23 kB
import gradio as gr
import json
from bs4 import BeautifulSoup
from matsa import MATSA, InputInstance
import imgkit
import tempfile
import time
import threading
TABLE_FOLDER = "./tables_folder/MATSA_fetaqa.json"
# Load data from JSON file
def load_data():
with open(TABLE_FOLDER, 'r') as json_file:
return json.load(json_file)
# Global variable to store the loaded data
TABLE_DATA = load_data()
def get_table_names():
return [f"tab_{i+1}" for i in range(len(TABLE_DATA))]
def html_to_image(html_content):
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as temp_img:
imgkit.from_string(html_content, temp_img.name)
return temp_img.name
def highlight_table(html_table, row_ids, col_ids):
soup = BeautifulSoup(html_table, 'html.parser')
row_sel = []
# Highlight rows
for row_id in row_ids:
row = soup.find('tr', id=row_id)
if row:
row_sel.append(row)
for col_id in col_ids:
col_index = int(col_id.split('-')[1]) - 1 # Convert col-1 to index 0, col-2 to index 1, etc.
for row in soup.find_all('tr'):
cells = row.find_all(['td', 'th'])
if row in row_sel:
if col_index < len(cells):
cells[col_index]['style'] = 'background-color: rgba(173, 216, 230, 0.7);'
else:
if col_index < len(cells):
cells[col_index]['style'] = 'background-color: rgba(211, 211, 211, 0.6);'
return str(soup)
def load_table_data(table_name):
if not table_name:
return None, "", ""
index = int(table_name.split('_')[1]) - 1
data = TABLE_DATA[index]
html_content = data['html_table']
question = data.get("question", "") #data['question']
if question is None:
question = ""
answer = data['answer_statement']
image_path = html_to_image(html_content)
return image_path, question, answer
def process_input(table_name, question, answer):
if not table_name:
return "Please select a table from the dropdown."
# Get the data for the selected table
index = int(table_name.split('_')[1]) - 1
data = TABLE_DATA[index]
html_content = data['html_table']
print("html_content: ", html_content)
print("question: ", question)
print("answer: ", answer)
# Initialize MATSA
matsa_agent = MATSA()
# Create input instance
instance = InputInstance(html_table=html_content, question=question, answer=answer)
# Apply MATSA pipeline
# formatted_table = matsa_agent.table_formatting_agent(instance.html_table)
augmented_table = matsa_agent.description_augmentation_agent(instance.html_table)
print("augmented_table: ", augmented_table)
fact_list = matsa_agent.answer_decomposition_agent(instance.answer)
print("fact_list: ", fact_list)
attributed_table, _, _ = matsa_agent.semantic_retreival_agent(augmented_table, fact_list)
print("attributed_table: ", attributed_table)
attribution_fxn = matsa_agent.sufficiency_attribution_agent(fact_list, attributed_table)
print("attribution_fxn: ", attribution_fxn)
# Get row and column attributions
row_attribution_set = attribution_fxn["Row Citations"]
col_attribution_set = attribution_fxn["Column Citations"]
explnation = attribution_fxn.get("Explanation", "")
print("row_attribution_set: ", row_attribution_set)
print("col_attribution_set: ", col_attribution_set)
print("Explanation: ", attribution_fxn.get("Explanation", ""))
# Convert string representations to lists
if isinstance(row_attribution_set, str):
row_ids = eval(row_attribution_set)
else:
row_ids = row_attribution_set
if isinstance(col_attribution_set, str):
col_ids = eval(col_attribution_set)
else:
col_ids = col_attribution_set
# Highlight the table
highlighted_table = highlight_table(instance.html_table, row_ids, col_ids)
result = {
"highlighted_table": highlighted_table,
"facts": attribution_fxn.get("List of Facts", []),
"row_citations": row_attribution_set,
"column_citations": col_attribution_set,
"Explanation": explnation
}
return json.dumps(result)
# Define Gradio interface
with gr.Blocks() as iface:
gr.Markdown("# MATSA: Table Question Answering with Attribution")
gr.Markdown("Select a table from dropdown load table image, question, and answer.")
gr.Markdown("Attributions are provided as per answer. You may change the question/answer as per your need.")
table_dropdown = gr.Dropdown(choices=get_table_names(), label="Select Table")
original_table = gr.Image(type="filepath", label="Original Table")
question_box = gr.Textbox(label="Question")
answer_box = gr.Textbox(label="Answer")
gr.Markdown("Click 'Process' to see the highlighted relevant parts. Click 'Reset' to start over.")
process_button = gr.Button("Process")
reset_button = gr.Button("Reset")
processing_time = gr.Textbox(label="Processing Time", value="0 seconds")
highlighted_table = gr.HTML(label="Highlighted Table")
explanation_box = gr.Textbox(label="Explanation")
def update_table_data(table_name):
image_path, question, answer = load_table_data(table_name)
return image_path, question, answer, gr.update(interactive=True)
def reset_app():
return (
gr.update(value="", interactive=True), # table_dropdown
None, # original_table
"", # question_box
"", # answer_box
"", # highlighted_table
"", # explanation_box
gr.update(interactive=True), # process_button
"0 seconds", # processing_time
)
def process_and_disable(table_name, question, answer):
processing = True
counter = 0
def update_counter():
nonlocal counter
while processing:
counter += 1
yield counter
time.sleep(1)
counter_thread = threading.Thread(target=update_counter)
counter_thread.start()
# Disable the dropdown and process button during processing
yield (
gr.update(interactive=False), # table_dropdown
gr.update(interactive=False), # process_button
gr.update(value="Processing..."), # processing_time
gr.update(), # highlighted_table
gr.update(), # explanation_box
)
# Process the input
result = process_input(table_name, question, answer)
result_dict = json.loads(result)
# Stop the counter
processing = False
counter_thread.join()
# Re-enable the dropdown and process button, update processing time, and return the result
yield (
gr.update(interactive=True), # table_dropdown
gr.update(interactive=True), # process_button
f"Processed in {counter} seconds", # processing_time
gr.update(value=result_dict['highlighted_table']), # highlighted_table
gr.update(value=result_dict.get('Explanation', '')), # explanation_box
{
"Row Citations": result_dict['row_citations'],
"Column Citations": result_dict['column_citations']
}
)
table_dropdown.change(update_table_data,
inputs=[table_dropdown],
outputs=[original_table, question_box, answer_box, process_button])
process_button.click(process_and_disable,
inputs=[table_dropdown, question_box, answer_box],
outputs=[table_dropdown, process_button, processing_time, highlighted_table, explanation_box])
reset_button.click(reset_app,
inputs=[],
outputs=[table_dropdown, original_table, question_box, answer_box, highlighted_table, explanation_box, process_button, processing_time])
# Launch the interface
iface.launch(share=True)