Spaces:
Runtime error
Runtime error
pushing app script
Browse files- README.md +0 -13
- app/app.py +132 -0
- requirements.txt +5 -0
README.md
DELETED
@@ -1,13 +0,0 @@
|
|
1 |
-
---
|
2 |
-
title: Streamlit Image Classification Demo
|
3 |
-
emoji: π
|
4 |
-
colorFrom: red
|
5 |
-
colorTo: yellow
|
6 |
-
sdk: streamlit
|
7 |
-
sdk_version: 1.17.0
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
license: mit
|
11 |
-
---
|
12 |
-
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app/app.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
|
4 |
+
current = os.path.dirname(os.path.realpath(__file__))
|
5 |
+
|
6 |
+
parent = os.path.dirname(current)
|
7 |
+
|
8 |
+
sys.path.append(parent)
|
9 |
+
|
10 |
+
import albumentations as A
|
11 |
+
import matplotlib.pyplot as plt
|
12 |
+
import numpy as np
|
13 |
+
import streamlit as st
|
14 |
+
import torch
|
15 |
+
from albumentations.pytorch import ToTensorV2
|
16 |
+
from PIL import Image
|
17 |
+
|
18 |
+
from model import Classifier
|
19 |
+
|
20 |
+
# Load the model
|
21 |
+
model = Classifier.load_from_checkpoint("./models/checkpoint_old.ckpt")
|
22 |
+
model.eval()
|
23 |
+
|
24 |
+
# Define labels
|
25 |
+
labels = [
|
26 |
+
"dog",
|
27 |
+
"horse",
|
28 |
+
"elephant",
|
29 |
+
"butterfly",
|
30 |
+
"chicken",
|
31 |
+
"cat",
|
32 |
+
"cow",
|
33 |
+
"sheep",
|
34 |
+
"spider",
|
35 |
+
"squirrel",
|
36 |
+
]
|
37 |
+
|
38 |
+
# Preprocess function
|
39 |
+
def preprocess(image):
|
40 |
+
image = np.array(image)
|
41 |
+
resize = A.Resize(224, 224)
|
42 |
+
normalize = A.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
|
43 |
+
to_tensor = ToTensorV2()
|
44 |
+
transform = A.Compose([resize, normalize, to_tensor])
|
45 |
+
image = transform(image=image)["image"]
|
46 |
+
return image
|
47 |
+
|
48 |
+
|
49 |
+
# Define the sample images
|
50 |
+
sample_images = {
|
51 |
+
"butterfly": "./test_images/butterfly.jpg",
|
52 |
+
"cat": "./test_images/cat.jpg",
|
53 |
+
"dog": "./test_images/dog.jpeg",
|
54 |
+
"squirrel": "./test_images/squirrel.jpeg",
|
55 |
+
"horse": "./test_images/horse.jpeg",
|
56 |
+
}
|
57 |
+
|
58 |
+
# Define the function to make predictions on an image
|
59 |
+
def predict(image):
|
60 |
+
try:
|
61 |
+
image = preprocess(image).unsqueeze(0)
|
62 |
+
|
63 |
+
# Prediction
|
64 |
+
# Make a prediction on the image
|
65 |
+
with torch.no_grad():
|
66 |
+
output = model(image)
|
67 |
+
# convert to probabilities
|
68 |
+
probabilities = torch.nn.functional.softmax(output[0])
|
69 |
+
|
70 |
+
topk_prob, topk_label = torch.topk(probabilities, 3)
|
71 |
+
|
72 |
+
# convert the predictions to a list
|
73 |
+
predictions = []
|
74 |
+
for i in range(topk_prob.size(0)):
|
75 |
+
prob = topk_prob[i].item()
|
76 |
+
label = topk_label[i].item()
|
77 |
+
predictions.append((prob, label))
|
78 |
+
|
79 |
+
return predictions
|
80 |
+
except Exception as e:
|
81 |
+
print(f"Error predicting image: {e}")
|
82 |
+
return []
|
83 |
+
|
84 |
+
|
85 |
+
# Define the Streamlit app
|
86 |
+
def app():
|
87 |
+
st.title("Animal-10 Image Classification")
|
88 |
+
|
89 |
+
# Add a file uploader
|
90 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
91 |
+
|
92 |
+
# # Add a selectbox to choose from sample images
|
93 |
+
sample = st.selectbox("Or choose from sample images:", list(sample_images.keys()))
|
94 |
+
|
95 |
+
# If an image is uploaded, make a prediction on it
|
96 |
+
if uploaded_file is not None:
|
97 |
+
image = Image.open(uploaded_file)
|
98 |
+
st.image(image, caption="Uploaded Image.", use_column_width=True)
|
99 |
+
predictions = predict(image)
|
100 |
+
|
101 |
+
# If a sample image is chosen, make a prediction on it
|
102 |
+
elif sample:
|
103 |
+
image = Image.open(sample_images[sample])
|
104 |
+
st.image(image, caption=sample.capitalize() + " Image.", use_column_width=True)
|
105 |
+
predictions = predict(image)
|
106 |
+
|
107 |
+
# Show the top 3 predictions with their probabilities
|
108 |
+
if predictions:
|
109 |
+
st.write("Top 3 predictions:")
|
110 |
+
for i, (prob, label) in enumerate(predictions):
|
111 |
+
st.write(f"{i+1}. {labels[label]} ({prob*100:.2f}%)")
|
112 |
+
|
113 |
+
# Show progress bar with probabilities
|
114 |
+
st.markdown(
|
115 |
+
"""
|
116 |
+
<style>
|
117 |
+
.stProgress .st-b8 {
|
118 |
+
background-color: orange;
|
119 |
+
}
|
120 |
+
</style>
|
121 |
+
""",
|
122 |
+
unsafe_allow_html=True,
|
123 |
+
)
|
124 |
+
st.progress(prob)
|
125 |
+
|
126 |
+
else:
|
127 |
+
st.write("No predictions.")
|
128 |
+
|
129 |
+
|
130 |
+
# Run the app
|
131 |
+
if __name__ == "__main__":
|
132 |
+
app()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pytorch
|
2 |
+
pytorch-lightning
|
3 |
+
simple-parsing
|
4 |
+
albumentations
|
5 |
+
matplotlib
|