akhaliq HF staff commited on
Commit
bc1a45c
1 Parent(s): e5cdad5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -2
app.py CHANGED
@@ -1,3 +1,4 @@
 
1
  import torch
2
  import gradio as gr
3
  from PIL import Image
@@ -8,6 +9,9 @@ torch.hub.download_url_to_file("https://github.com/pytorch/hub/raw/master/images
8
  model = torch.hub.load('pytorch/vision:v0.9.0', 'alexnet', pretrained=True)
9
  model.eval()
10
 
 
 
 
11
  def inference(input_image):
12
 
13
  preprocess = transforms.Compose([
@@ -28,8 +32,6 @@ def inference(input_image):
28
  output = model(input_batch)
29
  # The output has unnormalized scores. To get probabilities, you can run a softmax on it.
30
  probabilities = torch.nn.functional.softmax(output[0], dim=0)
31
- # Download ImageNet labels
32
- !wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt
33
  # Read the categories
34
  with open("imagenet_classes.txt", "r") as f:
35
  categories = [s.strip() for s in f.readlines()]
 
1
+ import os
2
  import torch
3
  import gradio as gr
4
  from PIL import Image
 
9
  model = torch.hub.load('pytorch/vision:v0.9.0', 'alexnet', pretrained=True)
10
  model.eval()
11
 
12
+ # Download ImageNet labels
13
+ os.system("wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt")
14
+
15
  def inference(input_image):
16
 
17
  preprocess = transforms.Compose([
 
32
  output = model(input_batch)
33
  # The output has unnormalized scores. To get probabilities, you can run a softmax on it.
34
  probabilities = torch.nn.functional.softmax(output[0], dim=0)
 
 
35
  # Read the categories
36
  with open("imagenet_classes.txt", "r") as f:
37
  categories = [s.strip() for s in f.readlines()]