File size: 11,255 Bytes
7497e24
f860e61
0e90065
 
36edf66
f860e61
884bfb5
330e95b
f860e61
 
36edf66
0e90065
f860e61
 
0e90065
 
906c92b
e39562b
0e90065
36edf66
 
 
 
 
 
 
 
 
 
 
 
330e95b
 
 
 
 
f860e61
330e95b
 
 
e3ab52c
330e95b
 
e3ab52c
36edf66
 
f860e61
36edf66
1644e6b
36edf66
 
 
 
 
 
 
 
 
 
 
 
e3ab52c
330e95b
36edf66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e39562b
0e90065
e39562b
 
 
 
 
 
 
 
0e90065
 
 
 
 
330e95b
e39562b
 
 
 
 
f860e61
330e95b
7f3db95
 
 
 
 
 
 
330e95b
36edf66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
330e95b
 
e3ab52c
 
 
0e90065
e39562b
0e90065
 
 
 
 
f860e61
884bfb5
0e90065
3cb38a4
de8f900
 
f860e61
 
e39562b
f860e61
7f543e6
 
f860e61
 
e39562b
 
f860e61
e39562b
0e90065
 
e39562b
f860e61
0e90065
1644e6b
0e90065
e39562b
330e95b
0e90065
 
bddba98
 
36edf66
 
 
 
bddba98
1644e6b
0e90065
 
 
 
330e95b
0e90065
 
f860e61
 
 
 
 
 
 
 
 
 
 
7497e24
f860e61
36edf66
bddba98
36edf66
 
 
 
 
 
e39562b
7497e24
 
e39562b
7497e24
 
36edf66
7497e24
3d0e95b
ace5a59
 
f860e61
 
 
36edf66
 
906c92b
 
36edf66
 
 
 
 
7de2513
 
 
 
36edf66
 
f860e61
36edf66
3d0e95b
 
 
906c92b
e39562b
b58a148
7497e24
 
906c92b
29825db
e39562b
4a08f06
7497e24
3d0e95b
e39562b
b58a148
906c92b
 
3d0e95b
 
 
906c92b
 
d0c3da4
3d0e95b
36edf66
3d0e95b
906c92b
3d0e95b
b58a148
3d0e95b
 
906c92b
3d0e95b
 
7de2513
3d0e95b
 
906c92b
f860e61
7de2513
36edf66
bddba98
 
36edf66
7de2513
 
 
 
bddba98
 
ace5a59
e39562b
 
ace5a59
f860e61
bddba98
36edf66
 
 
 
 
 
ace5a59
 
 
 
e39562b
 
3d0e95b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import os, json, random
import torch
import gradio as gr
import spaces
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from huggingface_hub import login, hf_hub_download
import pyreft
import pyvene as pv
from threading import Thread
from typing import Iterator
import torch.nn.functional as F

HF_TOKEN = os.environ.get("HF_TOKEN")
login(token=HF_TOKEN)

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 128  # smaller default to save memory
MAX_INPUT_TOKEN_LENGTH = 4096

css = """
#alert-message textarea {
    background-color: #e8f4ff;
    border: 1px solid #cce5ff;
    color: #084298;
    font-size: 1.1em;
    padding: 12px;
    border-radius: 4px;
    font-weight: 500;
}
"""

def load_jsonl(jsonl_path):
    jsonl_data = []
    with open(jsonl_path, 'r') as f:
        for line in f:
            data = json.loads(line)
            jsonl_data.append(data)
    return jsonl_data

class Steer(pv.SourcelessIntervention):
    """Steer model via activation addition"""
    def __init__(self, **kwargs):
        super().__init__(**kwargs, keep_last_dim=True)
        self.proj = torch.nn.Linear(
                self.embed_dim, kwargs["latent_dim"], bias=False)
        self.subspace_generator = kwargs["subspace_generator"]
    def forward(self, base, source=None, subspaces=None):
        if subspaces == None:
            return base
        if subspaces["subspace_gen_inputs"] is not None:
            # we call our subspace generator to generate the subspace on-the-fly.
            raw_steering_vec = self.subspace_generator(
                subspaces["subspace_gen_inputs"]["input_ids"],
                subspaces["subspace_gen_inputs"]["attention_mask"],
            )[0]
            steering_vec = torch.tensor(subspaces["mag"]) * \
                raw_steering_vec.unsqueeze(dim=0)
            return base + steering_vec
        else:
            steering_vec = torch.tensor(subspaces["mag"]) * \
                self.proj.weight[subspaces["idx"]].unsqueeze(dim=0)
        return base + steering_vec

class RegressionWrapper(torch.nn.Module):
    def __init__(self, base_model, hidden_size, output_dim):
        super().__init__()
        self.base_model = base_model
        self.regression_head = torch.nn.Linear(hidden_size, output_dim)

    def forward(self, input_ids, attention_mask):
        outputs = self.base_model.model(
            input_ids=input_ids, 
            attention_mask=attention_mask,
            output_hidden_states=True,
            return_dict=True
        )
        last_hiddens = outputs.hidden_states[-1]
        last_token_representations = last_hiddens[:, -1]
        preds = self.regression_head(last_token_representations)
        preds = F.normalize(preds, p=2, dim=-1)
        return preds

# Check GPU
if not torch.cuda.is_available():
    print("Warning: Running on CPU, may be slow.")

# Load model & dictionary
model_id = "google/gemma-2-2b-it"
pv_model = None
tokenizer = None
concept_list = []
concept_id_map = {}
if torch.cuda.is_available():
    model = AutoModelForCausalLM.from_pretrained(
        model_id, device_map="cuda", torch_dtype=torch.bfloat16
    )
    tokenizer = AutoTokenizer.from_pretrained(model_id)

    # Download dictionary
    weight_path = hf_hub_download(repo_id="pyvene/gemma-reft-2b-it-res", filename="l20/weight.pt")
    meta_path = hf_hub_download(repo_id="pyvene/gemma-reft-2b-it-res", filename="l20/metadata.jsonl")
    params = torch.load(weight_path).cuda()
    md = load_jsonl(meta_path)

    concept_list = [item["concept"] for item in md]
    concept_id_map = {}

    # the reason to reindex is because there is one concept that is missing.
    concept_reindex = 0
    for item in md:
        concept_id_map[item["concept"]] = concept_reindex
        concept_reindex += 1

    # load subspace generator.
    base_tokenizer = AutoTokenizer.from_pretrained(
        f"google/gemma-2-2b", model_max_length=512)
    config = AutoConfig.from_pretrained("google/gemma-2-2b")
    base_model = AutoModelForCausalLM.from_config(config)
    
    subspace_generator_weight_path = hf_hub_download(repo_id="pyvene/gemma-reft-2b-it-res-generator", filename="l20/weight.pt")
    hidden_size = base_model.config.hidden_size
    subspace_generator = RegressionWrapper(
        base_model, hidden_size, hidden_size).bfloat16().to("cuda")
    subspace_generator.load_state_dict(torch.load(subspace_generator_weight_path))
    print(f"Loading model from saved file {subspace_generator_weight_path}")
    _ = subspace_generator.eval()

    steer = Steer(
        embed_dim=params.shape[0], latent_dim=params.shape[1], 
        subspace_generator=subspace_generator)
    steer.proj.weight.data = params.float()

    pv_model = pv.IntervenableModel({
        "component": f"model.layers[20].output",
        "intervention": steer}, model=model)

terminators = [tokenizer.eos_token_id] if tokenizer else []

@spaces.GPU
def generate(
    message: str,
    chat_history: list[tuple[str, str]],
    subspaces_list: list[dict],
    max_new_tokens: int=DEFAULT_MAX_NEW_TOKENS,
) -> Iterator[str]:

    # limit to last 4 turns
    start_idx = max(0, len(chat_history) - 4)
    recent_history = chat_history[start_idx:]

    # build list of messages
    messages = []
    for rh in recent_history:
        messages.append({"role": rh["role"], "content": rh["content"]})
    messages.append({"role": "user", "content": message})

    input_ids = torch.tensor([tokenizer.apply_chat_template(
        messages, tokenize=True, add_generation_prompt=True)]).cuda()

    # trim if needed
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        yield "[Truncated prior text]\n"

    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    print(subspaces_list)
    generate_kwargs = {
        "base": {"input_ids": input_ids},
        "unit_locations": None,
        "max_new_tokens": max_new_tokens,
        "intervene_on_prompt": True,
        "subspaces": [
            {
                "idx": int(subspaces_list[0]["idx"]),
                "mag": int(subspaces_list[0]["internal_mag"]),
                "subspace_gen_inputs": base_tokenizer(subspaces_list[0]["subspace_gen_text"], return_tensors="pt").to("cuda") \
                    if subspaces_list[0]["subspace_gen_text"] is not None else None
            }
        ] if subspaces_list else None,
        "streamer": streamer,
        "do_sample": True
    }

    t = Thread(target=pv_model.generate, kwargs=generate_kwargs)
    t.start()

    partial_text = []
    for token_str in streamer:
        partial_text.append(token_str)
        yield "".join(partial_text)

def filter_concepts(search_text: str):
    if not search_text.strip():
        return concept_list[:500]
    filtered = [c for c in concept_list if search_text.lower() in c.lower()]
    return filtered[:500]

def add_concept_to_list(selected_concept, user_slider_val, current_list):
    if not selected_concept:
        return current_list

    selected_concept_text = None
    if selected_concept.startswith("[New] "):
        selected_concept_text = selected_concept[6:]
        idx = 0
    else:
        idx = concept_id_map[selected_concept]
    internal_mag = user_slider_val * 50
    new_entry = {
        "text": selected_concept,
        "idx": idx,
        "display_mag": user_slider_val,
        "internal_mag": internal_mag,
        "subspace_gen_text": selected_concept_text
    }
    # Add to the beginning of the list
    current_list = [new_entry]
    return current_list

def update_dropdown_choices(search_text):
    filtered = filter_concepts(search_text)
    if not filtered or len(filtered) == 0:
        return gr.update(choices=[f"[New] {search_text}"], value=f"[New] {search_text}", interactive=True), gr.Textbox(
        label="No matching existing topics were found!", 
        value="Good news! Based on the topic you provided, we will automatically generate a steering vector. Try it out by starting a chat!",
        lines=3,
        interactive=False,
        visible=True,
        elem_id="alert-message"
    )
    # Automatically select the first matching concept
    return gr.update(
        choices=filtered,
        value=filtered[0],  # Select the first match
        interactive=True, visible=True
    ), gr.Textbox(visible=False)

with gr.Blocks(css=css, fill_height=True) as demo:
    # Remove default subspaces
    selected_subspaces = gr.State([])
    
    with gr.Row(min_height=300):
        # Left side: bigger chat area
        with gr.Column(scale=7):
            chat_interface = gr.ChatInterface(
                fn=generate,
                title="Chat with a Topic Steering Model",
                description="""Choose a topic you want the model to discuss on the right →\n\nWe intervene on Gemma-2-2B-it by adding steering vectors to the residual stream at layer 20. You can also try our **conditioned steering** model [here](https://huggingface.co/spaces/pyvene/AxBench-ReFT-cr1-16K).""",
                type="messages",
                additional_inputs=[selected_subspaces],
            )
        
        # Right side: concept management
        with gr.Column(scale=3):
            gr.Markdown("# Steer model responses")
            gr.Markdown("Search and then select a topic you want the model to discuss. The closest match will be automatically selected. If there is no match, a finetuned Gemma-2-2B model auto-steers for you!")
            # Concept Search and Selection
            with gr.Group():
                search_box = gr.Textbox(
                    label="Search topics to steer",
                    placeholder="Try: 'time travel'",
                    lines=2,
                )
                msg = gr.TextArea(visible=False)
                concept_dropdown = gr.Dropdown(
                    label="Select a topic to steer the model (Click to see more!)",
                    interactive=True,
                    allow_custom_value=False,
                )
                concept_magnitude = gr.Slider(
                    label="Steering intensity",
                    minimum=-5,
                    maximum=5,
                    step=0.1,
                    value=3,
                )
            
    # Wire up events
    # When search box changes, update dropdown AND trigger concept selection
    search_box.input(
        update_dropdown_choices,
        [search_box],
        [concept_dropdown, msg]
    ).then(  # Chain the events to automatically add the concept
        add_concept_to_list,
        [concept_dropdown, concept_magnitude, selected_subspaces],
        [selected_subspaces]
    )

    concept_dropdown.select(
        add_concept_to_list,
        [concept_dropdown, concept_magnitude, selected_subspaces],
        [selected_subspaces]
    )

    concept_dropdown.change(
        add_concept_to_list,
        [concept_dropdown, concept_magnitude, selected_subspaces],
        [selected_subspaces]
    )
    
    concept_magnitude.input(
        add_concept_to_list,
        [concept_dropdown, concept_magnitude, selected_subspaces],
        [selected_subspaces]
    )

    demo.launch(share=True)