Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,255 Bytes
7497e24 f860e61 0e90065 36edf66 f860e61 884bfb5 330e95b f860e61 36edf66 0e90065 f860e61 0e90065 906c92b e39562b 0e90065 36edf66 330e95b f860e61 330e95b e3ab52c 330e95b e3ab52c 36edf66 f860e61 36edf66 1644e6b 36edf66 e3ab52c 330e95b 36edf66 e39562b 0e90065 e39562b 0e90065 330e95b e39562b f860e61 330e95b 7f3db95 330e95b 36edf66 330e95b e3ab52c 0e90065 e39562b 0e90065 f860e61 884bfb5 0e90065 3cb38a4 de8f900 f860e61 e39562b f860e61 7f543e6 f860e61 e39562b f860e61 e39562b 0e90065 e39562b f860e61 0e90065 1644e6b 0e90065 e39562b 330e95b 0e90065 bddba98 36edf66 bddba98 1644e6b 0e90065 330e95b 0e90065 f860e61 7497e24 f860e61 36edf66 bddba98 36edf66 e39562b 7497e24 e39562b 7497e24 36edf66 7497e24 3d0e95b ace5a59 f860e61 36edf66 906c92b 36edf66 7de2513 36edf66 f860e61 36edf66 3d0e95b 906c92b e39562b b58a148 7497e24 906c92b 29825db e39562b 4a08f06 7497e24 3d0e95b e39562b b58a148 906c92b 3d0e95b 906c92b d0c3da4 3d0e95b 36edf66 3d0e95b 906c92b 3d0e95b b58a148 3d0e95b 906c92b 3d0e95b 7de2513 3d0e95b 906c92b f860e61 7de2513 36edf66 bddba98 36edf66 7de2513 bddba98 ace5a59 e39562b ace5a59 f860e61 bddba98 36edf66 ace5a59 e39562b 3d0e95b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
import os, json, random
import torch
import gradio as gr
import spaces
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from huggingface_hub import login, hf_hub_download
import pyreft
import pyvene as pv
from threading import Thread
from typing import Iterator
import torch.nn.functional as F
HF_TOKEN = os.environ.get("HF_TOKEN")
login(token=HF_TOKEN)
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 128 # smaller default to save memory
MAX_INPUT_TOKEN_LENGTH = 4096
css = """
#alert-message textarea {
background-color: #e8f4ff;
border: 1px solid #cce5ff;
color: #084298;
font-size: 1.1em;
padding: 12px;
border-radius: 4px;
font-weight: 500;
}
"""
def load_jsonl(jsonl_path):
jsonl_data = []
with open(jsonl_path, 'r') as f:
for line in f:
data = json.loads(line)
jsonl_data.append(data)
return jsonl_data
class Steer(pv.SourcelessIntervention):
"""Steer model via activation addition"""
def __init__(self, **kwargs):
super().__init__(**kwargs, keep_last_dim=True)
self.proj = torch.nn.Linear(
self.embed_dim, kwargs["latent_dim"], bias=False)
self.subspace_generator = kwargs["subspace_generator"]
def forward(self, base, source=None, subspaces=None):
if subspaces == None:
return base
if subspaces["subspace_gen_inputs"] is not None:
# we call our subspace generator to generate the subspace on-the-fly.
raw_steering_vec = self.subspace_generator(
subspaces["subspace_gen_inputs"]["input_ids"],
subspaces["subspace_gen_inputs"]["attention_mask"],
)[0]
steering_vec = torch.tensor(subspaces["mag"]) * \
raw_steering_vec.unsqueeze(dim=0)
return base + steering_vec
else:
steering_vec = torch.tensor(subspaces["mag"]) * \
self.proj.weight[subspaces["idx"]].unsqueeze(dim=0)
return base + steering_vec
class RegressionWrapper(torch.nn.Module):
def __init__(self, base_model, hidden_size, output_dim):
super().__init__()
self.base_model = base_model
self.regression_head = torch.nn.Linear(hidden_size, output_dim)
def forward(self, input_ids, attention_mask):
outputs = self.base_model.model(
input_ids=input_ids,
attention_mask=attention_mask,
output_hidden_states=True,
return_dict=True
)
last_hiddens = outputs.hidden_states[-1]
last_token_representations = last_hiddens[:, -1]
preds = self.regression_head(last_token_representations)
preds = F.normalize(preds, p=2, dim=-1)
return preds
# Check GPU
if not torch.cuda.is_available():
print("Warning: Running on CPU, may be slow.")
# Load model & dictionary
model_id = "google/gemma-2-2b-it"
pv_model = None
tokenizer = None
concept_list = []
concept_id_map = {}
if torch.cuda.is_available():
model = AutoModelForCausalLM.from_pretrained(
model_id, device_map="cuda", torch_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Download dictionary
weight_path = hf_hub_download(repo_id="pyvene/gemma-reft-2b-it-res", filename="l20/weight.pt")
meta_path = hf_hub_download(repo_id="pyvene/gemma-reft-2b-it-res", filename="l20/metadata.jsonl")
params = torch.load(weight_path).cuda()
md = load_jsonl(meta_path)
concept_list = [item["concept"] for item in md]
concept_id_map = {}
# the reason to reindex is because there is one concept that is missing.
concept_reindex = 0
for item in md:
concept_id_map[item["concept"]] = concept_reindex
concept_reindex += 1
# load subspace generator.
base_tokenizer = AutoTokenizer.from_pretrained(
f"google/gemma-2-2b", model_max_length=512)
config = AutoConfig.from_pretrained("google/gemma-2-2b")
base_model = AutoModelForCausalLM.from_config(config)
subspace_generator_weight_path = hf_hub_download(repo_id="pyvene/gemma-reft-2b-it-res-generator", filename="l20/weight.pt")
hidden_size = base_model.config.hidden_size
subspace_generator = RegressionWrapper(
base_model, hidden_size, hidden_size).bfloat16().to("cuda")
subspace_generator.load_state_dict(torch.load(subspace_generator_weight_path))
print(f"Loading model from saved file {subspace_generator_weight_path}")
_ = subspace_generator.eval()
steer = Steer(
embed_dim=params.shape[0], latent_dim=params.shape[1],
subspace_generator=subspace_generator)
steer.proj.weight.data = params.float()
pv_model = pv.IntervenableModel({
"component": f"model.layers[20].output",
"intervention": steer}, model=model)
terminators = [tokenizer.eos_token_id] if tokenizer else []
@spaces.GPU
def generate(
message: str,
chat_history: list[tuple[str, str]],
subspaces_list: list[dict],
max_new_tokens: int=DEFAULT_MAX_NEW_TOKENS,
) -> Iterator[str]:
# limit to last 4 turns
start_idx = max(0, len(chat_history) - 4)
recent_history = chat_history[start_idx:]
# build list of messages
messages = []
for rh in recent_history:
messages.append({"role": rh["role"], "content": rh["content"]})
messages.append({"role": "user", "content": message})
input_ids = torch.tensor([tokenizer.apply_chat_template(
messages, tokenize=True, add_generation_prompt=True)]).cuda()
# trim if needed
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
yield "[Truncated prior text]\n"
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
print(subspaces_list)
generate_kwargs = {
"base": {"input_ids": input_ids},
"unit_locations": None,
"max_new_tokens": max_new_tokens,
"intervene_on_prompt": True,
"subspaces": [
{
"idx": int(subspaces_list[0]["idx"]),
"mag": int(subspaces_list[0]["internal_mag"]),
"subspace_gen_inputs": base_tokenizer(subspaces_list[0]["subspace_gen_text"], return_tensors="pt").to("cuda") \
if subspaces_list[0]["subspace_gen_text"] is not None else None
}
] if subspaces_list else None,
"streamer": streamer,
"do_sample": True
}
t = Thread(target=pv_model.generate, kwargs=generate_kwargs)
t.start()
partial_text = []
for token_str in streamer:
partial_text.append(token_str)
yield "".join(partial_text)
def filter_concepts(search_text: str):
if not search_text.strip():
return concept_list[:500]
filtered = [c for c in concept_list if search_text.lower() in c.lower()]
return filtered[:500]
def add_concept_to_list(selected_concept, user_slider_val, current_list):
if not selected_concept:
return current_list
selected_concept_text = None
if selected_concept.startswith("[New] "):
selected_concept_text = selected_concept[6:]
idx = 0
else:
idx = concept_id_map[selected_concept]
internal_mag = user_slider_val * 50
new_entry = {
"text": selected_concept,
"idx": idx,
"display_mag": user_slider_val,
"internal_mag": internal_mag,
"subspace_gen_text": selected_concept_text
}
# Add to the beginning of the list
current_list = [new_entry]
return current_list
def update_dropdown_choices(search_text):
filtered = filter_concepts(search_text)
if not filtered or len(filtered) == 0:
return gr.update(choices=[f"[New] {search_text}"], value=f"[New] {search_text}", interactive=True), gr.Textbox(
label="No matching existing topics were found!",
value="Good news! Based on the topic you provided, we will automatically generate a steering vector. Try it out by starting a chat!",
lines=3,
interactive=False,
visible=True,
elem_id="alert-message"
)
# Automatically select the first matching concept
return gr.update(
choices=filtered,
value=filtered[0], # Select the first match
interactive=True, visible=True
), gr.Textbox(visible=False)
with gr.Blocks(css=css, fill_height=True) as demo:
# Remove default subspaces
selected_subspaces = gr.State([])
with gr.Row(min_height=300):
# Left side: bigger chat area
with gr.Column(scale=7):
chat_interface = gr.ChatInterface(
fn=generate,
title="Chat with a Topic Steering Model",
description="""Choose a topic you want the model to discuss on the right →\n\nWe intervene on Gemma-2-2B-it by adding steering vectors to the residual stream at layer 20. You can also try our **conditioned steering** model [here](https://huggingface.co/spaces/pyvene/AxBench-ReFT-cr1-16K).""",
type="messages",
additional_inputs=[selected_subspaces],
)
# Right side: concept management
with gr.Column(scale=3):
gr.Markdown("# Steer model responses")
gr.Markdown("Search and then select a topic you want the model to discuss. The closest match will be automatically selected. If there is no match, a finetuned Gemma-2-2B model auto-steers for you!")
# Concept Search and Selection
with gr.Group():
search_box = gr.Textbox(
label="Search topics to steer",
placeholder="Try: 'time travel'",
lines=2,
)
msg = gr.TextArea(visible=False)
concept_dropdown = gr.Dropdown(
label="Select a topic to steer the model (Click to see more!)",
interactive=True,
allow_custom_value=False,
)
concept_magnitude = gr.Slider(
label="Steering intensity",
minimum=-5,
maximum=5,
step=0.1,
value=3,
)
# Wire up events
# When search box changes, update dropdown AND trigger concept selection
search_box.input(
update_dropdown_choices,
[search_box],
[concept_dropdown, msg]
).then( # Chain the events to automatically add the concept
add_concept_to_list,
[concept_dropdown, concept_magnitude, selected_subspaces],
[selected_subspaces]
)
concept_dropdown.select(
add_concept_to_list,
[concept_dropdown, concept_magnitude, selected_subspaces],
[selected_subspaces]
)
concept_dropdown.change(
add_concept_to_list,
[concept_dropdown, concept_magnitude, selected_subspaces],
[selected_subspaces]
)
concept_magnitude.input(
add_concept_to_list,
[concept_dropdown, concept_magnitude, selected_subspaces],
[selected_subspaces]
)
demo.launch(share=True)
|