Spaces:
Runtime error
Runtime error
haoning.wu
commited on
Commit
·
bba21a6
1
Parent(s):
e63f3e2
update format
Browse files- app.py +1 -1
- q_align/.ipynb_checkpoints/utils-checkpoint.py +0 -128
- q_align/evaluate/.ipynb_checkpoints/iaa_eval-checkpoint.py +0 -164
- q_align/evaluate/.ipynb_checkpoints/iqa4vqa_eval-checkpoint.py +0 -150
- q_align/evaluate/.ipynb_checkpoints/iqa_eval-checkpoint.py +0 -156
- q_align/evaluate/.ipynb_checkpoints/scorer-checkpoint.py +0 -155
- q_align/evaluate/.ipynb_checkpoints/vqa_eval-checkpoint.py +0 -167
- q_align/train/.ipynb_checkpoints/train-checkpoint.py +0 -844
app.py
CHANGED
|
@@ -64,7 +64,7 @@ def image_classifier(input_img, input_vid, scorer_type):
|
|
| 64 |
|
| 65 |
title_markdown = ("""
|
| 66 |
|
| 67 |
-
<
|
| 68 |
|
| 69 |
<h3 align="center"> One Unified Model for Visual scoring. </h3>
|
| 70 |
|
|
|
|
| 64 |
|
| 65 |
title_markdown = ("""
|
| 66 |
|
| 67 |
+
<h3 align="center">Q-Align: Teaching LMMs for Visual Scoring via Discrete Text-Defined Levels</h3>
|
| 68 |
|
| 69 |
<h3 align="center"> One Unified Model for Visual scoring. </h3>
|
| 70 |
|
q_align/.ipynb_checkpoints/utils-checkpoint.py
DELETED
|
@@ -1,128 +0,0 @@
|
|
| 1 |
-
import datetime
|
| 2 |
-
import logging
|
| 3 |
-
import logging.handlers
|
| 4 |
-
import os
|
| 5 |
-
import sys
|
| 6 |
-
|
| 7 |
-
import requests
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
from q_align.constants import LOGDIR
|
| 12 |
-
|
| 13 |
-
server_error_msg = "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**"
|
| 14 |
-
moderation_msg = "YOUR INPUT VIOLATES OUR CONTENT MODERATION GUIDELINES. PLEASE TRY AGAIN."
|
| 15 |
-
|
| 16 |
-
handler = None
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
def build_logger(logger_name, logger_filename):
|
| 20 |
-
global handler
|
| 21 |
-
|
| 22 |
-
formatter = logging.Formatter(
|
| 23 |
-
fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
|
| 24 |
-
datefmt="%Y-%m-%d %H:%M:%S",
|
| 25 |
-
)
|
| 26 |
-
|
| 27 |
-
# Set the format of root handlers
|
| 28 |
-
if not logging.getLogger().handlers:
|
| 29 |
-
logging.basicConfig(level=logging.INFO)
|
| 30 |
-
logging.getLogger().handlers[0].setFormatter(formatter)
|
| 31 |
-
|
| 32 |
-
# Redirect stdout and stderr to loggers
|
| 33 |
-
stdout_logger = logging.getLogger("stdout")
|
| 34 |
-
stdout_logger.setLevel(logging.INFO)
|
| 35 |
-
sl = StreamToLogger(stdout_logger, logging.INFO)
|
| 36 |
-
sys.stdout = sl
|
| 37 |
-
|
| 38 |
-
stderr_logger = logging.getLogger("stderr")
|
| 39 |
-
stderr_logger.setLevel(logging.ERROR)
|
| 40 |
-
sl = StreamToLogger(stderr_logger, logging.ERROR)
|
| 41 |
-
sys.stderr = sl
|
| 42 |
-
|
| 43 |
-
# Get logger
|
| 44 |
-
logger = logging.getLogger(logger_name)
|
| 45 |
-
logger.setLevel(logging.INFO)
|
| 46 |
-
|
| 47 |
-
# Add a file handler for all loggers
|
| 48 |
-
if handler is None:
|
| 49 |
-
os.makedirs(LOGDIR, exist_ok=True)
|
| 50 |
-
filename = os.path.join(LOGDIR, logger_filename)
|
| 51 |
-
handler = logging.handlers.TimedRotatingFileHandler(
|
| 52 |
-
filename, when='D', utc=True)
|
| 53 |
-
handler.setFormatter(formatter)
|
| 54 |
-
|
| 55 |
-
for name, item in logging.root.manager.loggerDict.items():
|
| 56 |
-
if isinstance(item, logging.Logger):
|
| 57 |
-
item.addHandler(handler)
|
| 58 |
-
|
| 59 |
-
return logger
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
class StreamToLogger(object):
|
| 63 |
-
"""
|
| 64 |
-
Fake file-like stream object that redirects writes to a logger instance.
|
| 65 |
-
"""
|
| 66 |
-
def __init__(self, logger, log_level=logging.INFO):
|
| 67 |
-
self.terminal = sys.stdout
|
| 68 |
-
self.logger = logger
|
| 69 |
-
self.log_level = log_level
|
| 70 |
-
self.linebuf = ''
|
| 71 |
-
|
| 72 |
-
def __getattr__(self, attr):
|
| 73 |
-
return getattr(self.terminal, attr)
|
| 74 |
-
|
| 75 |
-
def write(self, buf):
|
| 76 |
-
temp_linebuf = self.linebuf + buf
|
| 77 |
-
self.linebuf = ''
|
| 78 |
-
for line in temp_linebuf.splitlines(True):
|
| 79 |
-
# From the io.TextIOWrapper docs:
|
| 80 |
-
# On output, if newline is None, any '\n' characters written
|
| 81 |
-
# are translated to the system default line separator.
|
| 82 |
-
# By default sys.stdout.write() expects '\n' newlines and then
|
| 83 |
-
# translates them so this is still cross platform.
|
| 84 |
-
if line[-1] == '\n':
|
| 85 |
-
self.logger.log(self.log_level, line.rstrip())
|
| 86 |
-
else:
|
| 87 |
-
self.linebuf += line
|
| 88 |
-
|
| 89 |
-
def flush(self):
|
| 90 |
-
if self.linebuf != '':
|
| 91 |
-
self.logger.log(self.log_level, self.linebuf.rstrip())
|
| 92 |
-
self.linebuf = ''
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
def disable_torch_init():
|
| 96 |
-
"""
|
| 97 |
-
Disable the redundant torch default initialization to accelerate model creation.
|
| 98 |
-
"""
|
| 99 |
-
import torch
|
| 100 |
-
setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
|
| 101 |
-
setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
def violates_moderation(text):
|
| 105 |
-
"""
|
| 106 |
-
Check whether the text violates OpenAI moderation API.
|
| 107 |
-
"""
|
| 108 |
-
url = "https://api.openai.com/v1/moderations"
|
| 109 |
-
headers = {"Content-Type": "application/json",
|
| 110 |
-
"Authorization": "Bearer " + os.environ["OPENAI_API_KEY"]}
|
| 111 |
-
text = text.replace("\n", "")
|
| 112 |
-
data = "{" + '"input": ' + f'"{text}"' + "}"
|
| 113 |
-
data = data.encode("utf-8")
|
| 114 |
-
try:
|
| 115 |
-
ret = requests.post(url, headers=headers, data=data, timeout=5)
|
| 116 |
-
flagged = ret.json()["results"][0]["flagged"]
|
| 117 |
-
except requests.exceptions.RequestException as e:
|
| 118 |
-
flagged = False
|
| 119 |
-
except KeyError as e:
|
| 120 |
-
flagged = False
|
| 121 |
-
|
| 122 |
-
return flagged
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
def pretty_print_semaphore(semaphore):
|
| 126 |
-
if semaphore is None:
|
| 127 |
-
return "None"
|
| 128 |
-
return f"Semaphore(value={semaphore._value}, locked={semaphore.locked()})"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
q_align/evaluate/.ipynb_checkpoints/iaa_eval-checkpoint.py
DELETED
|
@@ -1,164 +0,0 @@
|
|
| 1 |
-
import argparse
|
| 2 |
-
import torch
|
| 3 |
-
|
| 4 |
-
from q_align.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
|
| 5 |
-
from q_align.conversation import conv_templates, SeparatorStyle
|
| 6 |
-
from q_align.model.builder import load_pretrained_model
|
| 7 |
-
from q_align.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
|
| 8 |
-
|
| 9 |
-
from PIL import Image
|
| 10 |
-
from PIL import ImageFile
|
| 11 |
-
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
| 12 |
-
|
| 13 |
-
import requests
|
| 14 |
-
from PIL import Image
|
| 15 |
-
from io import BytesIO
|
| 16 |
-
from transformers import TextStreamer
|
| 17 |
-
|
| 18 |
-
from scipy.stats import spearmanr, pearsonr
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
import json
|
| 22 |
-
from tqdm import tqdm
|
| 23 |
-
from collections import defaultdict
|
| 24 |
-
|
| 25 |
-
import os
|
| 26 |
-
|
| 27 |
-
def wa5(logits):
|
| 28 |
-
import numpy as np
|
| 29 |
-
logprobs = np.array([logits["excellent"], logits["good"], logits["fair"], logits["poor"], logits["bad"]])
|
| 30 |
-
probs = np.exp(logprobs) / np.sum(np.exp(logprobs))
|
| 31 |
-
return np.inner(probs, np.array([1,0.75,0.5,0.25,0.]))
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
def disable_torch_init():
|
| 37 |
-
"""
|
| 38 |
-
Disable the redundant torch default initialization to accelerate model creation.
|
| 39 |
-
"""
|
| 40 |
-
import torch
|
| 41 |
-
setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
|
| 42 |
-
setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
def load_image(image_file):
|
| 46 |
-
if image_file.startswith('http://') or image_file.startswith('https://'):
|
| 47 |
-
response = requests.get(image_file)
|
| 48 |
-
image = Image.open(BytesIO(response.content)).convert('RGB')
|
| 49 |
-
else:
|
| 50 |
-
image = Image.open(image_file).convert('RGB')
|
| 51 |
-
return image
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
def main(args):
|
| 55 |
-
# Model
|
| 56 |
-
disable_torch_init()
|
| 57 |
-
|
| 58 |
-
model_name = get_model_name_from_path(args.model_path)
|
| 59 |
-
tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit, device=args.device)
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
import json
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
image_path = "playground/data/"
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
json_prefix = "playground/data/test_jsons/"
|
| 69 |
-
jsons = [
|
| 70 |
-
json_prefix + "test_ava.json",
|
| 71 |
-
]
|
| 72 |
-
|
| 73 |
-
os.makedirs(f"results/{args.model_path}/", exist_ok=True)
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
conv_mode = "mplug_owl2"
|
| 77 |
-
|
| 78 |
-
inp = "How would you rate the aesthetics of this image?"
|
| 79 |
-
|
| 80 |
-
conv = conv_templates[conv_mode].copy()
|
| 81 |
-
inp = DEFAULT_IMAGE_TOKEN + inp
|
| 82 |
-
conv.append_message(conv.roles[0], inp)
|
| 83 |
-
image = None
|
| 84 |
-
|
| 85 |
-
conv.append_message(conv.roles[1], None)
|
| 86 |
-
prompt = conv.get_prompt() + " The aesthetics of the image is"
|
| 87 |
-
|
| 88 |
-
toks = ["good", "poor", "high", "fair", "low", "excellent", "bad", "fine", "moderate", "decent", "average", "medium", "acceptable"]
|
| 89 |
-
print(toks)
|
| 90 |
-
ids_ = [id_[1] for id_ in tokenizer(toks)["input_ids"]]
|
| 91 |
-
print(ids_)
|
| 92 |
-
|
| 93 |
-
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(args.device)
|
| 94 |
-
|
| 95 |
-
for json_ in jsons:
|
| 96 |
-
with open(json_) as f:
|
| 97 |
-
iqadata = json.load(f)
|
| 98 |
-
|
| 99 |
-
image_tensors = []
|
| 100 |
-
batch_data = []
|
| 101 |
-
prs, gts = [], []
|
| 102 |
-
for i, llddata in enumerate(tqdm(iqadata, desc="Evaluating [{}]".format(json_.split("/")[-1]))):
|
| 103 |
-
filename = llddata["image"]
|
| 104 |
-
llddata["logits"] = defaultdict(float)
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
image = load_image(image_path + filename)
|
| 109 |
-
def expand2square(pil_img, background_color):
|
| 110 |
-
width, height = pil_img.size
|
| 111 |
-
if width == height:
|
| 112 |
-
return pil_img
|
| 113 |
-
elif width > height:
|
| 114 |
-
result = Image.new(pil_img.mode, (width, width), background_color)
|
| 115 |
-
result.paste(pil_img, (0, (width - height) // 2))
|
| 116 |
-
return result
|
| 117 |
-
else:
|
| 118 |
-
result = Image.new(pil_img.mode, (height, height), background_color)
|
| 119 |
-
result.paste(pil_img, ((height - width) // 2, 0))
|
| 120 |
-
return result
|
| 121 |
-
image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean))
|
| 122 |
-
image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'].half().to(args.device)
|
| 123 |
-
|
| 124 |
-
image_tensors.append(image_tensor)
|
| 125 |
-
batch_data.append(llddata)
|
| 126 |
-
|
| 127 |
-
if i % 8 == 7 or i == len(iqadata) - 1:
|
| 128 |
-
with torch.inference_mode():
|
| 129 |
-
output_logits = model(input_ids.repeat(len(image_tensors), 1),
|
| 130 |
-
images=torch.cat(image_tensors, 0))["logits"][:,-1]
|
| 131 |
-
|
| 132 |
-
for j, xllddata in enumerate(batch_data):
|
| 133 |
-
for tok, id_ in zip(toks, ids_):
|
| 134 |
-
xllddata["logits"][tok] += output_logits[j,id_].item()
|
| 135 |
-
xllddata["score"] = wa5(xllddata["logits"])
|
| 136 |
-
# print(llddata)
|
| 137 |
-
prs.append(xllddata["score"])
|
| 138 |
-
gts.append(xllddata["gt_score"])
|
| 139 |
-
json_ = json_.replace("combined/", "combined-")
|
| 140 |
-
with open(f"results/{args.model_path}/{json_.split('/')[-1]}", "a") as wf:
|
| 141 |
-
json.dump(xllddata, wf)
|
| 142 |
-
|
| 143 |
-
image_tensors = []
|
| 144 |
-
batch_data = []
|
| 145 |
-
|
| 146 |
-
#if i > 0 and i % 200 == 0:
|
| 147 |
-
# print(spearmanr(prs,gts)[0], pearsonr(prs,gts)[0])
|
| 148 |
-
print("Spearmanr", spearmanr(prs,gts)[0], "Pearson", pearsonr(prs,gts)[0])
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
if __name__ == "__main__":
|
| 152 |
-
parser = argparse.ArgumentParser()
|
| 153 |
-
parser.add_argument("--model-path", type=str, default="q-future/one-align")
|
| 154 |
-
parser.add_argument("--model-base", type=str, default=None)
|
| 155 |
-
parser.add_argument("--device", type=str, default="cuda:0")
|
| 156 |
-
parser.add_argument("--conv-mode", type=str, default=None)
|
| 157 |
-
parser.add_argument("--temperature", type=float, default=0.2)
|
| 158 |
-
parser.add_argument("--max-new-tokens", type=int, default=512)
|
| 159 |
-
parser.add_argument("--load-8bit", action="store_true")
|
| 160 |
-
parser.add_argument("--load-4bit", action="store_true")
|
| 161 |
-
parser.add_argument("--debug", action="store_true")
|
| 162 |
-
parser.add_argument("--image-aspect-ratio", type=str, default='pad')
|
| 163 |
-
args = parser.parse_args()
|
| 164 |
-
main(args)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
q_align/evaluate/.ipynb_checkpoints/iqa4vqa_eval-checkpoint.py
DELETED
|
@@ -1,150 +0,0 @@
|
|
| 1 |
-
import argparse
|
| 2 |
-
import torch
|
| 3 |
-
|
| 4 |
-
from q_align.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
|
| 5 |
-
from q_align.conversation import conv_templates, SeparatorStyle
|
| 6 |
-
from q_align.model.builder import load_pretrained_model
|
| 7 |
-
from q_align.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
|
| 8 |
-
|
| 9 |
-
from PIL import Image
|
| 10 |
-
|
| 11 |
-
import requests
|
| 12 |
-
from PIL import Image
|
| 13 |
-
from io import BytesIO
|
| 14 |
-
from transformers import TextStreamer
|
| 15 |
-
|
| 16 |
-
from decord import VideoReader
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
import json
|
| 20 |
-
from tqdm import tqdm
|
| 21 |
-
from collections import defaultdict
|
| 22 |
-
|
| 23 |
-
import os
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
def disable_torch_init():
|
| 29 |
-
"""
|
| 30 |
-
Disable the redundant torch default initialization to accelerate model creation.
|
| 31 |
-
"""
|
| 32 |
-
import torch
|
| 33 |
-
setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
|
| 34 |
-
setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
def load_video(video_file):
|
| 38 |
-
vr = VideoReader(video_file)
|
| 39 |
-
|
| 40 |
-
# Get video frame rate
|
| 41 |
-
fps = vr.get_avg_fps()
|
| 42 |
-
|
| 43 |
-
# Calculate frame indices for 1fps
|
| 44 |
-
frame_indices = [int(fps * i) for i in range(int(len(vr) / fps))]
|
| 45 |
-
frames = vr.get_batch(frame_indices).asnumpy()
|
| 46 |
-
return [Image.fromarray(frames[i]) for i in range(int(len(vr) / fps))]
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
def main(args):
|
| 50 |
-
# Model
|
| 51 |
-
disable_torch_init()
|
| 52 |
-
|
| 53 |
-
model_name = get_model_name_from_path(args.model_path)
|
| 54 |
-
tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit, device=args.device)
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
import json
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
image_paths = [
|
| 61 |
-
"playground/data/",
|
| 62 |
-
"playground/data/",
|
| 63 |
-
"playground/data/KoNViD_1k_videos/",
|
| 64 |
-
"playground/data/maxwell/",
|
| 65 |
-
]
|
| 66 |
-
|
| 67 |
-
json_prefix = "playground/data/test_jsons/"
|
| 68 |
-
jsons = [
|
| 69 |
-
json_prefix + "test_lsvq.json",
|
| 70 |
-
json_prefix + "test_lsvq_1080p.json",
|
| 71 |
-
json_prefix + "konvid.json",
|
| 72 |
-
json_prefix + "maxwell_test.json",
|
| 73 |
-
]
|
| 74 |
-
|
| 75 |
-
os.makedirs(f"results/{args.model_path}/", exist_ok=True)
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
conv_mode = "mplug_owl2"
|
| 79 |
-
|
| 80 |
-
inp = "How would you rate the quality of this image?"
|
| 81 |
-
|
| 82 |
-
conv = conv_templates[conv_mode].copy()
|
| 83 |
-
inp = inp + "\n" + DEFAULT_IMAGE_TOKEN
|
| 84 |
-
conv.append_message(conv.roles[0], inp)
|
| 85 |
-
image = None
|
| 86 |
-
|
| 87 |
-
conv.append_message(conv.roles[1], None)
|
| 88 |
-
prompt = conv.get_prompt() + " The quality of the image is"
|
| 89 |
-
|
| 90 |
-
toks = ["good", "poor", "high", "fair", "low", "excellent", "bad", "fine", "moderate", "decent", "average", "medium", "acceptable"]
|
| 91 |
-
print(toks)
|
| 92 |
-
ids_ = [id_[1] for id_ in tokenizer(toks)["input_ids"]]
|
| 93 |
-
print(ids_)
|
| 94 |
-
|
| 95 |
-
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(args.device)
|
| 96 |
-
|
| 97 |
-
for image_path, json_ in zip(image_paths, jsons):
|
| 98 |
-
with open(json_) as f:
|
| 99 |
-
iqadata = json.load(f)
|
| 100 |
-
try:
|
| 101 |
-
for i, llddata in enumerate(tqdm(iqadata, desc="Evaluating [{}]".format(json_.split("/")[-1]))):
|
| 102 |
-
filename = llddata["img_path"]
|
| 103 |
-
llddata["logits"] = defaultdict(float)
|
| 104 |
-
|
| 105 |
-
image = load_video(image_path + filename)
|
| 106 |
-
def expand2square(pil_img, background_color):
|
| 107 |
-
width, height = pil_img.size
|
| 108 |
-
if width == height:
|
| 109 |
-
return pil_img
|
| 110 |
-
elif width > height:
|
| 111 |
-
result = Image.new(pil_img.mode, (width, width), background_color)
|
| 112 |
-
result.paste(pil_img, (0, (width - height) // 2))
|
| 113 |
-
return result
|
| 114 |
-
else:
|
| 115 |
-
result = Image.new(pil_img.mode, (height, height), background_color)
|
| 116 |
-
result.paste(pil_img, ((height - width) // 2, 0))
|
| 117 |
-
return result
|
| 118 |
-
image = [expand2square(img, tuple(int(x*255) for x in image_processor.image_mean)) for img in image]
|
| 119 |
-
image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'].half().to(args.device)
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
if True:
|
| 123 |
-
with torch.inference_mode():
|
| 124 |
-
output_logits = model(input_ids.repeat(image_tensor.shape[0], 1),
|
| 125 |
-
images=image_tensor)["logits"][:,-1]
|
| 126 |
-
|
| 127 |
-
for tok, id_ in zip(toks, ids_):
|
| 128 |
-
llddata["logits"][tok] += output_logits.mean(0)[id_].item()
|
| 129 |
-
# print(llddata)
|
| 130 |
-
json_ = json_.replace("combined/", "combined-")
|
| 131 |
-
with open(f"results/{args.model_path}/{json_.split('/')[-1]}", "a") as wf:
|
| 132 |
-
json.dump(llddata, wf)
|
| 133 |
-
except:
|
| 134 |
-
continue
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
if __name__ == "__main__":
|
| 138 |
-
parser = argparse.ArgumentParser()
|
| 139 |
-
parser.add_argument("--model-path", type=str, default="q-future/q-align-image")
|
| 140 |
-
parser.add_argument("--model-base", type=str, default=None)
|
| 141 |
-
parser.add_argument("--device", type=str, default="cuda:0")
|
| 142 |
-
parser.add_argument("--conv-mode", type=str, default=None)
|
| 143 |
-
parser.add_argument("--temperature", type=float, default=0.2)
|
| 144 |
-
parser.add_argument("--max-new-tokens", type=int, default=512)
|
| 145 |
-
parser.add_argument("--load-8bit", action="store_true")
|
| 146 |
-
parser.add_argument("--load-4bit", action="store_true")
|
| 147 |
-
parser.add_argument("--debug", action="store_true")
|
| 148 |
-
parser.add_argument("--image-aspect-ratio", type=str, default='pad')
|
| 149 |
-
args = parser.parse_args()
|
| 150 |
-
main(args)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
q_align/evaluate/.ipynb_checkpoints/iqa_eval-checkpoint.py
DELETED
|
@@ -1,156 +0,0 @@
|
|
| 1 |
-
import argparse
|
| 2 |
-
import torch
|
| 3 |
-
|
| 4 |
-
from q_align.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
|
| 5 |
-
from q_align.conversation import conv_templates, SeparatorStyle
|
| 6 |
-
from q_align.model.builder import load_pretrained_model
|
| 7 |
-
from q_align.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
|
| 8 |
-
|
| 9 |
-
from PIL import Image
|
| 10 |
-
|
| 11 |
-
import requests
|
| 12 |
-
from PIL import Image
|
| 13 |
-
from io import BytesIO
|
| 14 |
-
from transformers import TextStreamer
|
| 15 |
-
|
| 16 |
-
import json
|
| 17 |
-
from tqdm import tqdm
|
| 18 |
-
from collections import defaultdict
|
| 19 |
-
|
| 20 |
-
import os
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
def disable_torch_init():
|
| 26 |
-
"""
|
| 27 |
-
Disable the redundant torch default initialization to accelerate model creation.
|
| 28 |
-
"""
|
| 29 |
-
import torch
|
| 30 |
-
setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
|
| 31 |
-
setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
def load_image(image_file):
|
| 35 |
-
if image_file.startswith('http://') or image_file.startswith('https://'):
|
| 36 |
-
response = requests.get(image_file)
|
| 37 |
-
image = Image.open(BytesIO(response.content)).convert('RGB')
|
| 38 |
-
else:
|
| 39 |
-
image = Image.open(image_file).convert('RGB')
|
| 40 |
-
return image
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
def main(args):
|
| 44 |
-
# Model
|
| 45 |
-
disable_torch_init()
|
| 46 |
-
|
| 47 |
-
model_name = get_model_name_from_path(args.model_path)
|
| 48 |
-
tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit, device=args.device)
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
import json
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
image_path = "playground/data/"
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
json_prefix = "playground/data/test_jsons/"
|
| 58 |
-
jsons = [
|
| 59 |
-
json_prefix + "test_imagerewarddb.json",
|
| 60 |
-
json_prefix + "test_koniq.json",
|
| 61 |
-
json_prefix + "test_spaq.json",
|
| 62 |
-
json_prefix + "test_kadid.json",
|
| 63 |
-
json_prefix + "livec.json",
|
| 64 |
-
json_prefix + "agi.json",
|
| 65 |
-
json_prefix + "live.json",
|
| 66 |
-
json_prefix + "csiq.json",
|
| 67 |
-
]
|
| 68 |
-
|
| 69 |
-
os.makedirs(f"results/{args.model_path}/", exist_ok=True)
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
conv_mode = "mplug_owl2"
|
| 73 |
-
|
| 74 |
-
inp = "Evaluate the image quality of the following image."#"How would you rate the quality of this image?"
|
| 75 |
-
|
| 76 |
-
conv = conv_templates[conv_mode].copy()
|
| 77 |
-
inp = inp + "\n" + DEFAULT_IMAGE_TOKEN
|
| 78 |
-
conv.append_message(conv.roles[0], inp)
|
| 79 |
-
image = None
|
| 80 |
-
|
| 81 |
-
conv.append_message(conv.roles[1], None)
|
| 82 |
-
prompt = conv.get_prompt() + " The quality of the image is"
|
| 83 |
-
|
| 84 |
-
toks = ["good", "poor", "high", "fair", "low", "excellent", "bad", "fine", "moderate", "decent", "average", "medium", "acceptable"]
|
| 85 |
-
print(toks)
|
| 86 |
-
ids_ = [id_[1] for id_ in tokenizer(toks)["input_ids"]]
|
| 87 |
-
print(ids_)
|
| 88 |
-
|
| 89 |
-
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(args.device)
|
| 90 |
-
|
| 91 |
-
for json_ in jsons:
|
| 92 |
-
with open(json_) as f:
|
| 93 |
-
iqadata = json.load(f)
|
| 94 |
-
|
| 95 |
-
image_tensors = []
|
| 96 |
-
batch_data = []
|
| 97 |
-
|
| 98 |
-
for i, llddata in enumerate(tqdm(iqadata, desc="Evaluating [{}]".format(json_.split("/")[-1]))):
|
| 99 |
-
if True:
|
| 100 |
-
try:
|
| 101 |
-
filename = llddata["image"]
|
| 102 |
-
except:
|
| 103 |
-
filename = llddata["img_path"]
|
| 104 |
-
llddata["logits"] = defaultdict(float)
|
| 105 |
-
|
| 106 |
-
image = load_image(image_path + filename)
|
| 107 |
-
def expand2square(pil_img, background_color):
|
| 108 |
-
width, height = pil_img.size
|
| 109 |
-
if width == height:
|
| 110 |
-
return pil_img
|
| 111 |
-
elif width > height:
|
| 112 |
-
result = Image.new(pil_img.mode, (width, width), background_color)
|
| 113 |
-
result.paste(pil_img, (0, (width - height) // 2))
|
| 114 |
-
return result
|
| 115 |
-
else:
|
| 116 |
-
result = Image.new(pil_img.mode, (height, height), background_color)
|
| 117 |
-
result.paste(pil_img, ((height - width) // 2, 0))
|
| 118 |
-
return result
|
| 119 |
-
image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean))
|
| 120 |
-
image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'].half().to(args.device)
|
| 121 |
-
|
| 122 |
-
image_tensors.append(image_tensor)
|
| 123 |
-
batch_data.append(llddata)
|
| 124 |
-
|
| 125 |
-
if i % 8 == 7 or i == len(iqadata) - 1:
|
| 126 |
-
with torch.inference_mode():
|
| 127 |
-
output_logits = model(input_ids.repeat(len(image_tensors), 1),
|
| 128 |
-
images=torch.cat(image_tensors, 0))["logits"][:,-1]
|
| 129 |
-
|
| 130 |
-
for j, xllddata in enumerate(batch_data):
|
| 131 |
-
for tok, id_ in zip(toks, ids_):
|
| 132 |
-
xllddata["logits"][tok] += output_logits[j,id_].item()
|
| 133 |
-
# print(llddata)
|
| 134 |
-
json_ = json_.replace("combined/", "combined-")
|
| 135 |
-
with open(f"results/{args.model_path}/2{json_.split('/')[-1]}", "a") as wf:
|
| 136 |
-
json.dump(xllddata, wf)
|
| 137 |
-
|
| 138 |
-
image_tensors = []
|
| 139 |
-
batch_data = []
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
if __name__ == "__main__":
|
| 144 |
-
parser = argparse.ArgumentParser()
|
| 145 |
-
parser.add_argument("--model-path", type=str, default="q-future/one-align")
|
| 146 |
-
parser.add_argument("--model-base", type=str, default=None)
|
| 147 |
-
parser.add_argument("--device", type=str, default="cuda:0")
|
| 148 |
-
parser.add_argument("--conv-mode", type=str, default=None)
|
| 149 |
-
parser.add_argument("--temperature", type=float, default=0.2)
|
| 150 |
-
parser.add_argument("--max-new-tokens", type=int, default=512)
|
| 151 |
-
parser.add_argument("--load-8bit", action="store_true")
|
| 152 |
-
parser.add_argument("--load-4bit", action="store_true")
|
| 153 |
-
parser.add_argument("--debug", action="store_true")
|
| 154 |
-
parser.add_argument("--image-aspect-ratio", type=str, default='pad')
|
| 155 |
-
args = parser.parse_args()
|
| 156 |
-
main(args)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
q_align/evaluate/.ipynb_checkpoints/scorer-checkpoint.py
DELETED
|
@@ -1,155 +0,0 @@
|
|
| 1 |
-
from PIL import Image
|
| 2 |
-
|
| 3 |
-
import torch.nn as nn
|
| 4 |
-
import torch
|
| 5 |
-
|
| 6 |
-
from typing import List
|
| 7 |
-
|
| 8 |
-
from q_align.model.builder import load_pretrained_model
|
| 9 |
-
|
| 10 |
-
from q_align.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
|
| 11 |
-
from q_align.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
|
| 12 |
-
|
| 13 |
-
def load_video(video_file):
|
| 14 |
-
from decord import VideoReader
|
| 15 |
-
vr = VideoReader(video_file)
|
| 16 |
-
|
| 17 |
-
# Get video frame rate
|
| 18 |
-
fps = vr.get_avg_fps()
|
| 19 |
-
|
| 20 |
-
# Calculate frame indices for 1fps
|
| 21 |
-
frame_indices = [int(fps * i) for i in range(int(len(vr) / fps))]
|
| 22 |
-
frames = vr.get_batch(frame_indices).asnumpy()
|
| 23 |
-
return [Image.fromarray(frames[i]) for i in range(int(len(vr) / fps))]
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
class QAlignScorer(nn.Module):
|
| 27 |
-
def __init__(self, pretrained="q-future/one-align", device="cuda:0", tokenizer=None, model=None, image_processor=None):
|
| 28 |
-
super().__init__()
|
| 29 |
-
if model is None:
|
| 30 |
-
tokenizer, model, image_processor, _ = load_pretrained_model(pretrained, None, "mplug_owl2", device=device)
|
| 31 |
-
prompt = "USER: How would you rate the quality of this image?\n<|image|>\nASSISTANT: The quality of the image is"
|
| 32 |
-
|
| 33 |
-
self.preferential_ids_ = [id_[1] for id_ in tokenizer(["excellent","good","fair","poor","bad"])["input_ids"]]
|
| 34 |
-
self.weight_tensor = torch.Tensor([1,0.75,0.5,0.25,0.]).half().to(model.device)
|
| 35 |
-
|
| 36 |
-
self.tokenizer = tokenizer
|
| 37 |
-
self.model = model
|
| 38 |
-
self.image_processor = image_processor
|
| 39 |
-
self.input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device)
|
| 40 |
-
|
| 41 |
-
def expand2square(self, pil_img, background_color):
|
| 42 |
-
width, height = pil_img.size
|
| 43 |
-
if width == height:
|
| 44 |
-
return pil_img
|
| 45 |
-
elif width > height:
|
| 46 |
-
result = Image.new(pil_img.mode, (width, width), background_color)
|
| 47 |
-
result.paste(pil_img, (0, (width - height) // 2))
|
| 48 |
-
return result
|
| 49 |
-
else:
|
| 50 |
-
result = Image.new(pil_img.mode, (height, height), background_color)
|
| 51 |
-
result.paste(pil_img, ((height - width) // 2, 0))
|
| 52 |
-
return result
|
| 53 |
-
|
| 54 |
-
def forward(self, image: List[Image.Image]):
|
| 55 |
-
image = [self.expand2square(img, tuple(int(x*255) for x in self.image_processor.image_mean)) for img in image]
|
| 56 |
-
with torch.inference_mode():
|
| 57 |
-
image_tensor = self.image_processor.preprocess(image, return_tensors="pt")["pixel_values"].half().to(self.model.device)
|
| 58 |
-
output_logits = self.model(self.input_ids.repeat(image_tensor.shape[0], 1),
|
| 59 |
-
images=image_tensor)["logits"][:,-1, self.preferential_ids_]
|
| 60 |
-
|
| 61 |
-
return torch.softmax(output_logits, -1) #@ self.weight_tensor
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
class QAlignAestheticScorer(nn.Module):
|
| 65 |
-
def __init__(self, pretrained="q-future/one-align", device="cuda:0", tokenizer=None, model=None, image_processor=None):
|
| 66 |
-
super().__init__()
|
| 67 |
-
if model is None:
|
| 68 |
-
tokenizer, model, image_processor, _ = load_pretrained_model(pretrained, None, "mplug_owl2", device=device)
|
| 69 |
-
prompt = "USER: How would you rate the aesthetics of this image?\n<|image|>\nASSISTANT: The aesthetics of the image is"
|
| 70 |
-
|
| 71 |
-
self.preferential_ids_ = [id_[1] for id_ in tokenizer(["excellent","good","fair","poor","bad"])["input_ids"]]
|
| 72 |
-
self.weight_tensor = torch.Tensor([1,0.75,0.5,0.25,0.]).half().to(model.device)
|
| 73 |
-
|
| 74 |
-
self.tokenizer = tokenizer
|
| 75 |
-
self.model = model
|
| 76 |
-
self.image_processor = image_processor
|
| 77 |
-
self.input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device)
|
| 78 |
-
|
| 79 |
-
def expand2square(self, pil_img, background_color):
|
| 80 |
-
width, height = pil_img.size
|
| 81 |
-
if width == height:
|
| 82 |
-
return pil_img
|
| 83 |
-
elif width > height:
|
| 84 |
-
result = Image.new(pil_img.mode, (width, width), background_color)
|
| 85 |
-
result.paste(pil_img, (0, (width - height) // 2))
|
| 86 |
-
return result
|
| 87 |
-
else:
|
| 88 |
-
result = Image.new(pil_img.mode, (height, height), background_color)
|
| 89 |
-
result.paste(pil_img, ((height - width) // 2, 0))
|
| 90 |
-
return result
|
| 91 |
-
|
| 92 |
-
def forward(self, image: List[Image.Image]):
|
| 93 |
-
image = [self.expand2square(img, tuple(int(x*255) for x in self.image_processor.image_mean)) for img in image]
|
| 94 |
-
with torch.inference_mode():
|
| 95 |
-
image_tensor = self.image_processor.preprocess(image, return_tensors="pt")["pixel_values"].half().to(self.model.device)
|
| 96 |
-
output_logits = self.model(self.input_ids.repeat(image_tensor.shape[0], 1),
|
| 97 |
-
images=image_tensor)["logits"][:,-1, self.preferential_ids_]
|
| 98 |
-
|
| 99 |
-
return torch.softmax(output_logits, -1) #@ self.weight_tensor
|
| 100 |
-
|
| 101 |
-
class QAlignVideoScorer(nn.Module):
|
| 102 |
-
def __init__(self, pretrained="q-future/one-align", device="cuda:0", tokenizer=None, model=None, image_processor=None):
|
| 103 |
-
super().__init__()
|
| 104 |
-
if model is None:
|
| 105 |
-
tokenizer, model, image_processor, _ = load_pretrained_model(pretrained, None, "mplug_owl2", device=device)
|
| 106 |
-
prompt = "USER: How would you rate the quality of this video?\n<|image|>\nASSISTANT: The quality of the video is"
|
| 107 |
-
|
| 108 |
-
self.preferential_ids_ = [id_[1] for id_ in tokenizer(["excellent","good","fair","poor","bad"])["input_ids"]]
|
| 109 |
-
self.weight_tensor = torch.Tensor([1,0.75,0.5,0.25,0.]).half().to(model.device)
|
| 110 |
-
|
| 111 |
-
self.tokenizer = tokenizer
|
| 112 |
-
self.model = model
|
| 113 |
-
self.image_processor = image_processor
|
| 114 |
-
self.input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device)
|
| 115 |
-
|
| 116 |
-
def expand2square(self, pil_img, background_color):
|
| 117 |
-
width, height = pil_img.size
|
| 118 |
-
if width == height:
|
| 119 |
-
return pil_img
|
| 120 |
-
elif width > height:
|
| 121 |
-
result = Image.new(pil_img.mode, (width, width), background_color)
|
| 122 |
-
result.paste(pil_img, (0, (width - height) // 2))
|
| 123 |
-
return result
|
| 124 |
-
else:
|
| 125 |
-
result = Image.new(pil_img.mode, (height, height), background_color)
|
| 126 |
-
result.paste(pil_img, ((height - width) // 2, 0))
|
| 127 |
-
return result
|
| 128 |
-
|
| 129 |
-
def forward(self, video: List[List[Image.Image]]):
|
| 130 |
-
video = [[self.expand2square(frame, tuple(int(x*255) for x in self.image_processor.image_mean)) for frame in vid] for vid in video]
|
| 131 |
-
with torch.inference_mode():
|
| 132 |
-
video_tensors = [self.image_processor.preprocess(vid, return_tensors="pt")["pixel_values"].half().to(self.model.device) for vid in video]
|
| 133 |
-
output_logits = self.model(self.input_ids.repeat(len(video_tensors), 1),
|
| 134 |
-
images=video_tensors)["logits"][:,-1, self.preferential_ids_]
|
| 135 |
-
return torch.softmax(output_logits, -1) #@ self.weight_tensor
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
if __name__ == "__main__":
|
| 139 |
-
import argparse
|
| 140 |
-
|
| 141 |
-
parser = argparse.ArgumentParser()
|
| 142 |
-
parser.add_argument("--model-path", type=str, default="q-future/one-align")
|
| 143 |
-
parser.add_argument("--device", type=str, default="cuda:0")
|
| 144 |
-
parser.add_argument("--img_path", type=str, default="fig/singapore_flyer.jpg")
|
| 145 |
-
parser.add_argument("--aesthetic", action="store_true")
|
| 146 |
-
parser.add_argument("--video", action="store_true")
|
| 147 |
-
args = parser.parse_args()
|
| 148 |
-
|
| 149 |
-
if args.video:
|
| 150 |
-
scorer = QAlignVideoScorer(pretrained=args.model_path, device=args.device)
|
| 151 |
-
print(scorer([load_video(args.img_path)]).tolist())
|
| 152 |
-
else:
|
| 153 |
-
scorer = QAlignScorer(pretrained=args.model_path, device=args.device) if not args.aesthetic else QAlignAestheticScorer(pretrained=args.model_path, device=args.device)
|
| 154 |
-
print(scorer([Image.open(args.img_path)]).tolist())
|
| 155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
q_align/evaluate/.ipynb_checkpoints/vqa_eval-checkpoint.py
DELETED
|
@@ -1,167 +0,0 @@
|
|
| 1 |
-
import argparse
|
| 2 |
-
import torch
|
| 3 |
-
|
| 4 |
-
from q_align.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
|
| 5 |
-
from q_align.conversation import conv_templates, SeparatorStyle
|
| 6 |
-
from q_align.model.builder import load_pretrained_model
|
| 7 |
-
from q_align.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
|
| 8 |
-
|
| 9 |
-
from PIL import Image
|
| 10 |
-
|
| 11 |
-
import requests
|
| 12 |
-
from PIL import Image
|
| 13 |
-
from io import BytesIO
|
| 14 |
-
from transformers import TextStreamer
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
from scipy.stats import spearmanr, pearsonr
|
| 18 |
-
|
| 19 |
-
import json
|
| 20 |
-
from tqdm import tqdm
|
| 21 |
-
from collections import defaultdict
|
| 22 |
-
|
| 23 |
-
import os
|
| 24 |
-
|
| 25 |
-
def wa5(logits):
|
| 26 |
-
import numpy as np
|
| 27 |
-
logprobs = np.array([logits["excellent"], logits["good"], logits["fair"], logits["poor"], logits["bad"]])
|
| 28 |
-
probs = np.exp(logprobs) / np.sum(np.exp(logprobs))
|
| 29 |
-
return np.inner(probs, np.array([1,0.75,0.5,0.25,0.]))
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
def disable_torch_init():
|
| 34 |
-
"""
|
| 35 |
-
Disable the redundant torch default initialization to accelerate model creation.
|
| 36 |
-
"""
|
| 37 |
-
import torch
|
| 38 |
-
setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
|
| 39 |
-
setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
def load_video(video_file):
|
| 43 |
-
from decord import VideoReader
|
| 44 |
-
vr = VideoReader(video_file)
|
| 45 |
-
|
| 46 |
-
# Get video frame rate
|
| 47 |
-
fps = vr.get_avg_fps()
|
| 48 |
-
|
| 49 |
-
# Calculate frame indices for 1fps
|
| 50 |
-
frame_indices = [int(fps * i) for i in range(int(len(vr) / fps))]
|
| 51 |
-
frames = vr.get_batch(frame_indices).asnumpy()
|
| 52 |
-
return [Image.fromarray(frames[i]) for i in range(int(len(vr) / fps))]
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
def main(args):
|
| 56 |
-
# Model
|
| 57 |
-
disable_torch_init()
|
| 58 |
-
|
| 59 |
-
model_name = get_model_name_from_path(args.model_path)
|
| 60 |
-
tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit, device=args.device)
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
import json
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
image_paths = [
|
| 67 |
-
#"playground/data/",
|
| 68 |
-
#"playground/data/",
|
| 69 |
-
"playground/data/KoNViD_1k_videos/",
|
| 70 |
-
"playground/data/maxwell/",
|
| 71 |
-
|
| 72 |
-
]
|
| 73 |
-
|
| 74 |
-
json_prefix = "playground/data/test_jsons/"
|
| 75 |
-
jsons = [
|
| 76 |
-
#json_prefix + "test_lsvq.json",
|
| 77 |
-
#json_prefix + "test_lsvq_1080p.json",
|
| 78 |
-
json_prefix + "konvid.json",
|
| 79 |
-
json_prefix + "maxwell_test.json",
|
| 80 |
-
]
|
| 81 |
-
|
| 82 |
-
os.makedirs(f"results/{args.model_path}/", exist_ok=True)
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
conv_mode = "mplug_owl2"
|
| 86 |
-
|
| 87 |
-
inp = "How would you rate the quality of this video?"
|
| 88 |
-
|
| 89 |
-
conv = conv_templates[conv_mode].copy()
|
| 90 |
-
inp = inp + "\n" + DEFAULT_IMAGE_TOKEN
|
| 91 |
-
conv.append_message(conv.roles[0], inp)
|
| 92 |
-
image = None
|
| 93 |
-
|
| 94 |
-
conv.append_message(conv.roles[1], None)
|
| 95 |
-
prompt = conv.get_prompt() + " The quality of the video is"
|
| 96 |
-
|
| 97 |
-
toks = ["good", "poor", "high", "fair", "low", "excellent", "bad", "fine", "moderate", "decent", "average", "medium", "acceptable"]
|
| 98 |
-
print(toks)
|
| 99 |
-
ids_ = [id_[1] for id_ in tokenizer(toks)["input_ids"]]
|
| 100 |
-
print(ids_)
|
| 101 |
-
|
| 102 |
-
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(args.device)
|
| 103 |
-
|
| 104 |
-
for image_path, json_ in zip(image_paths, jsons):
|
| 105 |
-
with open(json_) as f:
|
| 106 |
-
iqadata = json.load(f)
|
| 107 |
-
prs, gts = [], []
|
| 108 |
-
for i, llddata in enumerate(tqdm(iqadata, desc="Evaluating [{}]".format(json_.split("/")[-1]))):
|
| 109 |
-
try:
|
| 110 |
-
try:
|
| 111 |
-
filename = llddata["img_path"]
|
| 112 |
-
except:
|
| 113 |
-
filename = llddata["image"]
|
| 114 |
-
llddata["logits"] = defaultdict(float)
|
| 115 |
-
|
| 116 |
-
image = load_video(image_path + filename)
|
| 117 |
-
def expand2square(pil_img, background_color):
|
| 118 |
-
width, height = pil_img.size
|
| 119 |
-
if width == height:
|
| 120 |
-
return pil_img
|
| 121 |
-
elif width > height:
|
| 122 |
-
result = Image.new(pil_img.mode, (width, width), background_color)
|
| 123 |
-
result.paste(pil_img, (0, (width - height) // 2))
|
| 124 |
-
return result
|
| 125 |
-
else:
|
| 126 |
-
result = Image.new(pil_img.mode, (height, height), background_color)
|
| 127 |
-
result.paste(pil_img, ((height - width) // 2, 0))
|
| 128 |
-
return result
|
| 129 |
-
image = [expand2square(img, tuple(int(x*255) for x in image_processor.image_mean)) for img in image]
|
| 130 |
-
image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'].half().to(args.device)
|
| 131 |
-
|
| 132 |
-
if True:
|
| 133 |
-
with torch.inference_mode():
|
| 134 |
-
output_logits = model(input_ids,
|
| 135 |
-
images=[image_tensor])["logits"][:,-1]
|
| 136 |
-
for tok, id_ in zip(toks, ids_):
|
| 137 |
-
llddata["logits"][tok] += output_logits.mean(0)[id_].item()
|
| 138 |
-
llddata["score"] = wa5(llddata["logits"])
|
| 139 |
-
# print(llddata)
|
| 140 |
-
prs.append(llddata["score"])
|
| 141 |
-
gts.append(llddata["gt_score"])
|
| 142 |
-
# print(llddata)
|
| 143 |
-
json_ = json_.replace("combined/", "combined-")
|
| 144 |
-
with open(f"results/{args.model_path}/2{json_.split('/')[-1]}", "a") as wf:
|
| 145 |
-
json.dump(llddata, wf)
|
| 146 |
-
|
| 147 |
-
if i > 0 and i % 200 == 0:
|
| 148 |
-
print(spearmanr(prs,gts)[0], pearsonr(prs,gts)[0])
|
| 149 |
-
except:
|
| 150 |
-
continue
|
| 151 |
-
print("Spearmanr", spearmanr(prs,gts)[0], "Pearson", pearsonr(prs,gts)[0])
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
if __name__ == "__main__":
|
| 155 |
-
parser = argparse.ArgumentParser()
|
| 156 |
-
parser.add_argument("--model-path", type=str, default="q-future/one-align")
|
| 157 |
-
parser.add_argument("--model-base", type=str, default=None)
|
| 158 |
-
parser.add_argument("--device", type=str, default="cuda:0")
|
| 159 |
-
parser.add_argument("--conv-mode", type=str, default=None)
|
| 160 |
-
parser.add_argument("--temperature", type=float, default=0.2)
|
| 161 |
-
parser.add_argument("--max-new-tokens", type=int, default=512)
|
| 162 |
-
parser.add_argument("--load-8bit", action="store_true")
|
| 163 |
-
parser.add_argument("--load-4bit", action="store_true")
|
| 164 |
-
parser.add_argument("--debug", action="store_true")
|
| 165 |
-
parser.add_argument("--image-aspect-ratio", type=str, default='pad')
|
| 166 |
-
args = parser.parse_args()
|
| 167 |
-
main(args)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
q_align/train/.ipynb_checkpoints/train-checkpoint.py
DELETED
|
@@ -1,844 +0,0 @@
|
|
| 1 |
-
# Adopted from https://github.com/lm-sys/FastChat. Below is the original copyright:
|
| 2 |
-
# Adopted from tatsu-lab@stanford_alpaca. Below is the original copyright:
|
| 3 |
-
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
|
| 4 |
-
#
|
| 5 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
-
# you may not use this file except in compliance with the License.
|
| 7 |
-
# You may obtain a copy of the License at
|
| 8 |
-
#
|
| 9 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
-
#
|
| 11 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
-
# See the License for the specific language governing permissions and
|
| 15 |
-
# limitations under the License.
|
| 16 |
-
|
| 17 |
-
import os
|
| 18 |
-
import copy
|
| 19 |
-
from dataclasses import dataclass, field
|
| 20 |
-
import json
|
| 21 |
-
import logging
|
| 22 |
-
import pathlib
|
| 23 |
-
from typing import Dict, Optional, Sequence, List
|
| 24 |
-
|
| 25 |
-
from PIL import ImageFile
|
| 26 |
-
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
| 27 |
-
|
| 28 |
-
import torch
|
| 29 |
-
|
| 30 |
-
import transformers
|
| 31 |
-
from transformers.models.clip.image_processing_clip import CLIPImageProcessor
|
| 32 |
-
|
| 33 |
-
from torch.utils.data import Dataset
|
| 34 |
-
from q_align.train.mplug_owl2_trainer import MPLUGOwl2Trainer
|
| 35 |
-
from q_align.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
|
| 36 |
-
|
| 37 |
-
from q_align import conversation as conversation_lib
|
| 38 |
-
from q_align.model import *
|
| 39 |
-
from q_align.mm_utils import tokenizer_image_token
|
| 40 |
-
|
| 41 |
-
from PIL import Image
|
| 42 |
-
from icecream import ic
|
| 43 |
-
|
| 44 |
-
local_rank = None
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
def rank0_print(*args):
|
| 48 |
-
if local_rank == 0:
|
| 49 |
-
print(*args)
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
@dataclass
|
| 53 |
-
class ModelArguments:
|
| 54 |
-
model_name_or_path: Optional[str] = field(default="facebook/opt-125m")
|
| 55 |
-
version: Optional[str] = field(default="v0")
|
| 56 |
-
freeze_backbone: bool = field(default=False)
|
| 57 |
-
|
| 58 |
-
@dataclass
|
| 59 |
-
class DataArguments:
|
| 60 |
-
data_path: str = field(default=None,
|
| 61 |
-
metadata={"help": "Path to the training data."})
|
| 62 |
-
lazy_preprocess: bool = False
|
| 63 |
-
is_multimodal: bool = False
|
| 64 |
-
image_folder: Optional[str] = field(default=None)
|
| 65 |
-
image_aspect_ratio: str = 'square'
|
| 66 |
-
image_grid_pinpoints: Optional[str] = field(default=None)
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
@dataclass
|
| 70 |
-
class TrainingArguments(transformers.TrainingArguments):
|
| 71 |
-
cache_dir: Optional[str] = field(default=None)
|
| 72 |
-
optim: str = field(default="adamw_torch")
|
| 73 |
-
remove_unused_columns: bool = field(default=False)
|
| 74 |
-
|
| 75 |
-
tune_visual_abstractor: bool = field(default=True)
|
| 76 |
-
freeze_vision_model: bool = field(default=True)
|
| 77 |
-
|
| 78 |
-
model_max_length: int = field(
|
| 79 |
-
default=512,
|
| 80 |
-
metadata={
|
| 81 |
-
"help":
|
| 82 |
-
"Maximum sequence length. Sequences will be right padded (and possibly truncated)."
|
| 83 |
-
},
|
| 84 |
-
)
|
| 85 |
-
double_quant: bool = field(
|
| 86 |
-
default=True,
|
| 87 |
-
metadata={"help": "Compress the quantization statistics through double quantization."}
|
| 88 |
-
)
|
| 89 |
-
quant_type: str = field(
|
| 90 |
-
default="nf4",
|
| 91 |
-
metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."}
|
| 92 |
-
)
|
| 93 |
-
bits: int = field(
|
| 94 |
-
default=16,
|
| 95 |
-
metadata={"help": "How many bits to use."}
|
| 96 |
-
)
|
| 97 |
-
lora_enable: bool = False
|
| 98 |
-
lora_r: int = 64
|
| 99 |
-
lora_alpha: int = 16
|
| 100 |
-
lora_dropout: float = 0.05
|
| 101 |
-
lora_weight_path: str = ""
|
| 102 |
-
lora_bias: str = "none"
|
| 103 |
-
visual_abstractor_lr: Optional[float] = None
|
| 104 |
-
group_by_modality_length: bool = field(default=False)
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
def maybe_zero_3(param, ignore_status=False, name=None):
|
| 108 |
-
from deepspeed import zero
|
| 109 |
-
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
|
| 110 |
-
if hasattr(param, "ds_id"):
|
| 111 |
-
if param.ds_status == ZeroParamStatus.NOT_AVAILABLE:
|
| 112 |
-
if not ignore_status:
|
| 113 |
-
logging.warning(f"{name}: param.ds_status != ZeroParamStatus.NOT_AVAILABLE: {param.ds_status}")
|
| 114 |
-
with zero.GatheredParameters([param]):
|
| 115 |
-
param = param.data.detach().cpu().clone()
|
| 116 |
-
else:
|
| 117 |
-
param = param.detach().cpu().clone()
|
| 118 |
-
return param
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
# Borrowed from peft.utils.get_peft_model_state_dict
|
| 122 |
-
def get_peft_state_maybe_zero_3(named_params, bias):
|
| 123 |
-
if bias == "none":
|
| 124 |
-
to_return = {k: t for k, t in named_params if "lora_" in k}
|
| 125 |
-
elif bias == "all":
|
| 126 |
-
to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k}
|
| 127 |
-
elif bias == "lora_only":
|
| 128 |
-
to_return = {}
|
| 129 |
-
maybe_lora_bias = {}
|
| 130 |
-
lora_bias_names = set()
|
| 131 |
-
for k, t in named_params:
|
| 132 |
-
if "lora_" in k:
|
| 133 |
-
to_return[k] = t
|
| 134 |
-
bias_name = k.split("lora_")[0] + "bias"
|
| 135 |
-
lora_bias_names.add(bias_name)
|
| 136 |
-
elif "bias" in k:
|
| 137 |
-
maybe_lora_bias[k] = t
|
| 138 |
-
for k, t in maybe_lora_bias:
|
| 139 |
-
if bias_name in lora_bias_names:
|
| 140 |
-
to_return[bias_name] = t
|
| 141 |
-
else:
|
| 142 |
-
raise NotImplementedError
|
| 143 |
-
to_return = {k: maybe_zero_3(v, ignore_status=True) for k, v in to_return.items()}
|
| 144 |
-
return to_return
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True):
|
| 148 |
-
to_return = {k: t for k, t in named_params if "lora_" not in k}
|
| 149 |
-
if require_grad_only:
|
| 150 |
-
to_return = {k: t for k, t in to_return.items() if t.requires_grad}
|
| 151 |
-
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()}
|
| 152 |
-
return to_return
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match):
|
| 156 |
-
to_return = {k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)}
|
| 157 |
-
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()}
|
| 158 |
-
return to_return
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
def find_all_linear_names(model):
|
| 162 |
-
cls = torch.nn.Linear
|
| 163 |
-
lora_module_names = set()
|
| 164 |
-
multimodal_keywords = ['vision_model', 'visual_abstractor']
|
| 165 |
-
for name, module in model.named_modules():
|
| 166 |
-
if any(mm_keyword in name for mm_keyword in multimodal_keywords):
|
| 167 |
-
continue
|
| 168 |
-
if isinstance(module, cls):
|
| 169 |
-
lora_module_names.add(name)
|
| 170 |
-
|
| 171 |
-
if 'lm_head' in lora_module_names: # needed for 16-bit
|
| 172 |
-
lora_module_names.remove('lm_head')
|
| 173 |
-
return list(lora_module_names)
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
def safe_save_model_for_hf_trainer(trainer: transformers.Trainer,
|
| 177 |
-
output_dir: str):
|
| 178 |
-
"""Collects the state dict and dump to disk."""
|
| 179 |
-
|
| 180 |
-
if trainer.deepspeed:
|
| 181 |
-
torch.cuda.synchronize()
|
| 182 |
-
trainer.save_model(output_dir)
|
| 183 |
-
return
|
| 184 |
-
|
| 185 |
-
state_dict = trainer.model.state_dict()
|
| 186 |
-
if trainer.args.should_save:
|
| 187 |
-
cpu_state_dict = {
|
| 188 |
-
key: value.cpu()
|
| 189 |
-
for key, value in state_dict.items()
|
| 190 |
-
}
|
| 191 |
-
del state_dict
|
| 192 |
-
trainer._save(output_dir, state_dict=cpu_state_dict) # noqa
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
def smart_tokenizer_and_embedding_resize(
|
| 196 |
-
special_tokens_dict: Dict,
|
| 197 |
-
tokenizer: transformers.PreTrainedTokenizer,
|
| 198 |
-
model: transformers.PreTrainedModel,
|
| 199 |
-
):
|
| 200 |
-
"""Resize tokenizer and embedding.
|
| 201 |
-
|
| 202 |
-
Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
|
| 203 |
-
"""
|
| 204 |
-
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
|
| 205 |
-
model.resize_token_embeddings(len(tokenizer))
|
| 206 |
-
|
| 207 |
-
if num_new_tokens > 0:
|
| 208 |
-
input_embeddings = model.get_input_embeddings().weight.data
|
| 209 |
-
output_embeddings = model.get_output_embeddings().weight.data
|
| 210 |
-
|
| 211 |
-
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
|
| 212 |
-
dim=0, keepdim=True)
|
| 213 |
-
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
|
| 214 |
-
dim=0, keepdim=True)
|
| 215 |
-
|
| 216 |
-
input_embeddings[-num_new_tokens:] = input_embeddings_avg
|
| 217 |
-
output_embeddings[-num_new_tokens:] = output_embeddings_avg
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
def _tokenize_fn(strings: Sequence[str],
|
| 221 |
-
tokenizer: transformers.PreTrainedTokenizer) -> Dict:
|
| 222 |
-
"""Tokenize a list of strings."""
|
| 223 |
-
tokenized_list = [
|
| 224 |
-
tokenizer(
|
| 225 |
-
text,
|
| 226 |
-
return_tensors="pt",
|
| 227 |
-
padding="longest",
|
| 228 |
-
max_length=tokenizer.model_max_length,
|
| 229 |
-
truncation=True,
|
| 230 |
-
) for text in strings
|
| 231 |
-
]
|
| 232 |
-
input_ids = labels = [
|
| 233 |
-
tokenized.input_ids[0] for tokenized in tokenized_list
|
| 234 |
-
]
|
| 235 |
-
input_ids_lens = labels_lens = [
|
| 236 |
-
tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item()
|
| 237 |
-
for tokenized in tokenized_list
|
| 238 |
-
]
|
| 239 |
-
return dict(
|
| 240 |
-
input_ids=input_ids,
|
| 241 |
-
labels=labels,
|
| 242 |
-
input_ids_lens=input_ids_lens,
|
| 243 |
-
labels_lens=labels_lens,
|
| 244 |
-
)
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
def _mask_targets(target, tokenized_lens, speakers):
|
| 248 |
-
# cur_idx = 0
|
| 249 |
-
cur_idx = tokenized_lens[0]
|
| 250 |
-
tokenized_lens = tokenized_lens[1:]
|
| 251 |
-
target[:cur_idx] = IGNORE_INDEX
|
| 252 |
-
for tokenized_len, speaker in zip(tokenized_lens, speakers):
|
| 253 |
-
if speaker == "human":
|
| 254 |
-
target[cur_idx+2:cur_idx + tokenized_len] = IGNORE_INDEX
|
| 255 |
-
cur_idx += tokenized_len
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
def _add_speaker_and_signal(header, source, get_conversation=True):
|
| 259 |
-
"""Add speaker and start/end signal on each round."""
|
| 260 |
-
BEGIN_SIGNAL = "### "
|
| 261 |
-
END_SIGNAL = "\n"
|
| 262 |
-
conversation = header
|
| 263 |
-
for sentence in source:
|
| 264 |
-
from_str = sentence["from"]
|
| 265 |
-
if from_str.lower() == "human":
|
| 266 |
-
from_str = conversation_lib.default_conversation.roles[0]
|
| 267 |
-
elif from_str.lower() == "gpt":
|
| 268 |
-
from_str = conversation_lib.default_conversation.roles[1]
|
| 269 |
-
else:
|
| 270 |
-
from_str = 'unknown'
|
| 271 |
-
sentence["value"] = (BEGIN_SIGNAL + from_str + ": " +
|
| 272 |
-
sentence["value"] + END_SIGNAL)
|
| 273 |
-
if get_conversation:
|
| 274 |
-
conversation += sentence["value"]
|
| 275 |
-
conversation += BEGIN_SIGNAL
|
| 276 |
-
return conversation
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
def preprocess_multimodal(
|
| 280 |
-
sources: Sequence[str],
|
| 281 |
-
data_args: DataArguments
|
| 282 |
-
) -> Dict:
|
| 283 |
-
is_multimodal = data_args.is_multimodal
|
| 284 |
-
if not is_multimodal:
|
| 285 |
-
return sources
|
| 286 |
-
|
| 287 |
-
for source in sources:
|
| 288 |
-
for sentence in source:
|
| 289 |
-
if DEFAULT_IMAGE_TOKEN in sentence['value']:
|
| 290 |
-
sentence['value'] = sentence['value'].replace(DEFAULT_IMAGE_TOKEN, '').strip()
|
| 291 |
-
sentence['value'] = DEFAULT_IMAGE_TOKEN + '\n' + sentence['value']
|
| 292 |
-
sentence['value'] = sentence['value'].strip()
|
| 293 |
-
|
| 294 |
-
replace_token = DEFAULT_IMAGE_TOKEN
|
| 295 |
-
sentence["value"] = sentence["value"].replace(DEFAULT_IMAGE_TOKEN, replace_token)
|
| 296 |
-
|
| 297 |
-
return sources
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
def preprocess_v1(
|
| 301 |
-
sources,
|
| 302 |
-
tokenizer: transformers.PreTrainedTokenizer,
|
| 303 |
-
has_image: bool = False
|
| 304 |
-
) -> Dict:
|
| 305 |
-
conv = conversation_lib.default_conversation.copy()
|
| 306 |
-
roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
|
| 307 |
-
|
| 308 |
-
# Apply prompt templates
|
| 309 |
-
conversations = []
|
| 310 |
-
for i, source in enumerate(sources):
|
| 311 |
-
if roles[source[0]["from"]] != conv.roles[0]:
|
| 312 |
-
# Skip the first one if it is not from human
|
| 313 |
-
source = source[1:]
|
| 314 |
-
|
| 315 |
-
conv.messages = []
|
| 316 |
-
for j, sentence in enumerate(source):
|
| 317 |
-
role = roles[sentence["from"]]
|
| 318 |
-
assert role == conv.roles[j % 2], f"{i}"
|
| 319 |
-
conv.append_message(role, sentence["value"])
|
| 320 |
-
conversations.append(conv.get_prompt())
|
| 321 |
-
|
| 322 |
-
# Tokenize conversations
|
| 323 |
-
|
| 324 |
-
if has_image:
|
| 325 |
-
input_ids = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations], dim=0)
|
| 326 |
-
else:
|
| 327 |
-
input_ids = tokenizer(
|
| 328 |
-
conversations,
|
| 329 |
-
return_tensors="pt",
|
| 330 |
-
padding="longest",
|
| 331 |
-
max_length=tokenizer.model_max_length,
|
| 332 |
-
truncation=True,
|
| 333 |
-
).input_ids
|
| 334 |
-
|
| 335 |
-
targets = input_ids.clone()
|
| 336 |
-
|
| 337 |
-
assert conv.sep_style == conversation_lib.SeparatorStyle.TWO or conv.sep_style == conversation_lib.SeparatorStyle.TWO_NO_SYS
|
| 338 |
-
|
| 339 |
-
# Mask targets
|
| 340 |
-
sep = conv.sep + conv.roles[1] + ": "
|
| 341 |
-
for conversation, target in zip(conversations, targets):
|
| 342 |
-
total_len = int(target.ne(tokenizer.pad_token_id).sum())
|
| 343 |
-
|
| 344 |
-
rounds = conversation.split(conv.sep2)
|
| 345 |
-
cur_len = 1
|
| 346 |
-
target[:cur_len] = IGNORE_INDEX
|
| 347 |
-
for i, rou in enumerate(rounds):
|
| 348 |
-
if rou == "":
|
| 349 |
-
break
|
| 350 |
-
|
| 351 |
-
parts = rou.split(sep)
|
| 352 |
-
if len(parts) != 2:
|
| 353 |
-
break
|
| 354 |
-
parts[0] += sep
|
| 355 |
-
|
| 356 |
-
if has_image:
|
| 357 |
-
round_len = len(tokenizer_image_token(rou, tokenizer))
|
| 358 |
-
instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 2
|
| 359 |
-
else:
|
| 360 |
-
round_len = len(tokenizer(rou).input_ids)
|
| 361 |
-
instruction_len = len(tokenizer(parts[0]).input_ids) - 2
|
| 362 |
-
|
| 363 |
-
target[cur_len : cur_len + instruction_len] = IGNORE_INDEX
|
| 364 |
-
|
| 365 |
-
cur_len += round_len
|
| 366 |
-
target[cur_len:] = IGNORE_INDEX
|
| 367 |
-
|
| 368 |
-
if cur_len < tokenizer.model_max_length:
|
| 369 |
-
if cur_len != total_len:
|
| 370 |
-
target[:] = IGNORE_INDEX
|
| 371 |
-
print(
|
| 372 |
-
f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}."
|
| 373 |
-
f" (ignored)"
|
| 374 |
-
)
|
| 375 |
-
|
| 376 |
-
return dict(
|
| 377 |
-
input_ids=input_ids,
|
| 378 |
-
labels=targets,
|
| 379 |
-
)
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
def preprocess_plain(
|
| 383 |
-
sources: Sequence[str],
|
| 384 |
-
tokenizer: transformers.PreTrainedTokenizer,
|
| 385 |
-
) -> Dict:
|
| 386 |
-
# add end signal and concatenate together
|
| 387 |
-
conversations = []
|
| 388 |
-
for source in sources:
|
| 389 |
-
assert len(source) == 2
|
| 390 |
-
assert DEFAULT_IMAGE_TOKEN in source[0]['value']
|
| 391 |
-
source[0]['value'] = DEFAULT_IMAGE_TOKEN
|
| 392 |
-
conversation = source[0]['value'] + source[1]['value'] + conversation_lib.default_conversation.sep
|
| 393 |
-
conversations.append(conversation)
|
| 394 |
-
# tokenize conversations
|
| 395 |
-
input_ids = [tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations]
|
| 396 |
-
targets = copy.deepcopy(input_ids)
|
| 397 |
-
for target, source in zip(targets, sources):
|
| 398 |
-
tokenized_len = len(tokenizer_image_token(source[0]['value'], tokenizer))
|
| 399 |
-
target[:tokenized_len] = IGNORE_INDEX
|
| 400 |
-
|
| 401 |
-
return dict(input_ids=input_ids, labels=targets)
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
def preprocess(
|
| 405 |
-
sources: Sequence[str],
|
| 406 |
-
tokenizer: transformers.PreTrainedTokenizer,
|
| 407 |
-
has_image: bool = False
|
| 408 |
-
) -> Dict:
|
| 409 |
-
"""
|
| 410 |
-
Given a list of sources, each is a conversation list. This transform:
|
| 411 |
-
1. Add signal '### ' at the beginning each sentence, with end signal '\n';
|
| 412 |
-
2. Concatenate conversations together;
|
| 413 |
-
3. Tokenize the concatenated conversation;
|
| 414 |
-
4. Make a deepcopy as the target. Mask human words with IGNORE_INDEX.
|
| 415 |
-
"""
|
| 416 |
-
if conversation_lib.default_conversation.sep_style == conversation_lib.SeparatorStyle.PLAIN:
|
| 417 |
-
return preprocess_plain(sources, tokenizer)
|
| 418 |
-
if conversation_lib.default_conversation.version.startswith("v1"):
|
| 419 |
-
return preprocess_v1(sources, tokenizer, has_image=has_image)
|
| 420 |
-
# add end signal and concatenate together
|
| 421 |
-
conversations = []
|
| 422 |
-
for source in sources:
|
| 423 |
-
header = f"{conversation_lib.default_conversation.system}\n\n"
|
| 424 |
-
conversation = _add_speaker_and_signal(header, source)
|
| 425 |
-
conversations.append(conversation)
|
| 426 |
-
# tokenize conversations
|
| 427 |
-
def get_tokenize_len(prompts):
|
| 428 |
-
return [len(tokenizer_image_token(prompt, tokenizer)) for prompt in prompts]
|
| 429 |
-
if has_image:
|
| 430 |
-
input_ids = [tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations]
|
| 431 |
-
else:
|
| 432 |
-
conversations_tokenized = _tokenize_fn(conversations, tokenizer)
|
| 433 |
-
input_ids = conversations_tokenized["input_ids"]
|
| 434 |
-
|
| 435 |
-
targets = copy.deepcopy(input_ids)
|
| 436 |
-
for target, source in zip(targets, sources):
|
| 437 |
-
if has_image:
|
| 438 |
-
tokenized_lens = get_tokenize_len([header] + [s["value"] for s in source])
|
| 439 |
-
else:
|
| 440 |
-
tokenized_lens = _tokenize_fn([header] + [s["value"] for s in source], tokenizer)["input_ids_lens"]
|
| 441 |
-
speakers = [sentence["from"] for sentence in source]
|
| 442 |
-
_mask_targets(target, tokenized_lens, speakers)
|
| 443 |
-
|
| 444 |
-
return dict(input_ids=input_ids, labels=targets)
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
def load_video(video_file):
|
| 448 |
-
from decord import VideoReader
|
| 449 |
-
vr = VideoReader(video_file)
|
| 450 |
-
|
| 451 |
-
# Get video frame rate
|
| 452 |
-
fps = vr.get_avg_fps()
|
| 453 |
-
|
| 454 |
-
# Calculate frame indices for 1fps
|
| 455 |
-
frame_indices = [int(fps * i) for i in range(int(len(vr) / fps))]
|
| 456 |
-
frames = vr.get_batch(frame_indices).asnumpy()
|
| 457 |
-
return [Image.fromarray(frames[i]) for i in range(int(len(vr) / fps))]
|
| 458 |
-
|
| 459 |
-
def expand2square(pil_img, background_color):
|
| 460 |
-
width, height = pil_img.size
|
| 461 |
-
if width == height:
|
| 462 |
-
return pil_img
|
| 463 |
-
elif width > height:
|
| 464 |
-
result = Image.new(pil_img.mode, (width, width), background_color)
|
| 465 |
-
result.paste(pil_img, (0, (width - height) // 2))
|
| 466 |
-
return result
|
| 467 |
-
else:
|
| 468 |
-
result = Image.new(pil_img.mode, (height, height), background_color)
|
| 469 |
-
result.paste(pil_img, ((height - width) // 2, 0))
|
| 470 |
-
return result
|
| 471 |
-
|
| 472 |
-
class LazySupervisedDataset(Dataset):
|
| 473 |
-
"""Dataset for supervised fine-tuning."""
|
| 474 |
-
|
| 475 |
-
def __init__(self, data_path: str,
|
| 476 |
-
tokenizer: transformers.PreTrainedTokenizer,
|
| 477 |
-
data_args: DataArguments):
|
| 478 |
-
super(LazySupervisedDataset, self).__init__()
|
| 479 |
-
list_data_dict = json.load(open(data_path, "r"))
|
| 480 |
-
|
| 481 |
-
rank0_print("Formatting inputs...Skip in lazy mode")
|
| 482 |
-
self.tokenizer = tokenizer
|
| 483 |
-
self.list_data_dict = list_data_dict
|
| 484 |
-
self.data_args = data_args
|
| 485 |
-
|
| 486 |
-
def __len__(self):
|
| 487 |
-
return len(self.list_data_dict)
|
| 488 |
-
|
| 489 |
-
@property
|
| 490 |
-
def lengths(self):
|
| 491 |
-
length_list = []
|
| 492 |
-
for sample in self.list_data_dict:
|
| 493 |
-
img_tokens = 128 if 'image' in sample else 0
|
| 494 |
-
length_list.append(sum(len(conv['value'].split()) for conv in sample['conversations']) + img_tokens)
|
| 495 |
-
return length_list
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
@property
|
| 499 |
-
def modality_lengths(self):
|
| 500 |
-
length_list = []
|
| 501 |
-
for sample in self.list_data_dict:
|
| 502 |
-
cur_len = sum(len(conv['value'].split()) for conv in sample['conversations'])
|
| 503 |
-
cur_len = cur_len if 'image' in sample else -cur_len
|
| 504 |
-
length_list.append(cur_len)
|
| 505 |
-
return length_list
|
| 506 |
-
|
| 507 |
-
# def __getitem__(self, i) -> Dict[str, torch.Tensor]:
|
| 508 |
-
# sources = self.list_data_dict[i]
|
| 509 |
-
# if isinstance(i, int):
|
| 510 |
-
# sources = [sources]
|
| 511 |
-
# assert len(sources) == 1, "Don't know why it is wrapped to a list" # FIXME
|
| 512 |
-
# if 'image' in sources[0]:
|
| 513 |
-
# image_file = self.list_data_dict[i]['image']
|
| 514 |
-
# image_folder = self.data_args.image_folder
|
| 515 |
-
# processor = self.data_args.image_processor
|
| 516 |
-
# image = Image.open(os.path.join(image_folder, image_file)).convert('RGB')
|
| 517 |
-
# if self.data_args.image_aspect_ratio == 'pad':
|
| 518 |
-
# def expand2square(pil_img, background_color):
|
| 519 |
-
# width, height = pil_img.size
|
| 520 |
-
# if width == height:
|
| 521 |
-
# return pil_img
|
| 522 |
-
# elif width > height:
|
| 523 |
-
# result = Image.new(pil_img.mode, (width, width), background_color)
|
| 524 |
-
# result.paste(pil_img, (0, (width - height) // 2))
|
| 525 |
-
# return result
|
| 526 |
-
# else:
|
| 527 |
-
# result = Image.new(pil_img.mode, (height, height), background_color)
|
| 528 |
-
# result.paste(pil_img, ((height - width) // 2, 0))
|
| 529 |
-
# return result
|
| 530 |
-
# image = expand2square(image, tuple(int(x*255) for x in processor.image_mean))
|
| 531 |
-
# image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
|
| 532 |
-
# else:
|
| 533 |
-
# image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
|
| 534 |
-
# sources = preprocess_multimodal(
|
| 535 |
-
# copy.deepcopy([e["conversations"] for e in sources]),
|
| 536 |
-
# self.data_args)
|
| 537 |
-
# else:
|
| 538 |
-
# sources = copy.deepcopy([e["conversations"] for e in sources])
|
| 539 |
-
# data_dict = preprocess(
|
| 540 |
-
# sources,
|
| 541 |
-
# self.tokenizer,
|
| 542 |
-
# has_image=('image' in self.list_data_dict[i]))
|
| 543 |
-
# if isinstance(i, int):
|
| 544 |
-
# data_dict = dict(input_ids=data_dict["input_ids"][0],
|
| 545 |
-
# labels=data_dict["labels"][0])
|
| 546 |
-
|
| 547 |
-
# # image exist in the data
|
| 548 |
-
# if 'image' in self.list_data_dict[i]:
|
| 549 |
-
# data_dict['image'] = image
|
| 550 |
-
# elif self.data_args.is_multimodal:
|
| 551 |
-
# # image does not exist in the data, but the model is multimodal
|
| 552 |
-
# crop_size = self.data_args.image_processor.crop_size
|
| 553 |
-
# data_dict['image'] = torch.zeros(3, crop_size['height'], crop_size['width'])
|
| 554 |
-
# return data_dict
|
| 555 |
-
|
| 556 |
-
def next_rand(self):
|
| 557 |
-
import random
|
| 558 |
-
return random.randint(0,len(self)-1)
|
| 559 |
-
|
| 560 |
-
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
|
| 561 |
-
while True:
|
| 562 |
-
sources = self.list_data_dict[i]
|
| 563 |
-
if isinstance(i, int):
|
| 564 |
-
sources = [sources]
|
| 565 |
-
assert len(sources) == 1, "Don't know why it is wrapped to a list" # FIXME
|
| 566 |
-
if 'image' in sources[0]:
|
| 567 |
-
image_file = self.list_data_dict[i]['image']
|
| 568 |
-
|
| 569 |
-
image_folder = self.data_args.image_folder
|
| 570 |
-
processor = self.data_args.image_processor
|
| 571 |
-
from pathlib import Path
|
| 572 |
-
#if not Path(os.path.join(image_folder, image_file)).exists():
|
| 573 |
-
# i = self.next_rand()
|
| 574 |
-
# continue
|
| 575 |
-
if isinstance(image_file, list):
|
| 576 |
-
# Multiple Images as Input
|
| 577 |
-
try:
|
| 578 |
-
image = [Image.open(os.path.join(image_folder, imfile)).convert('RGB') for imfile in image_file]
|
| 579 |
-
except Exception as ex:
|
| 580 |
-
print(ex)
|
| 581 |
-
i = self.next_rand()
|
| 582 |
-
continue
|
| 583 |
-
if self.data_args.image_aspect_ratio == 'pad':
|
| 584 |
-
image = [expand2square(img, tuple(int(x*255) for x in processor.image_mean)) for img in image]
|
| 585 |
-
image = processor.preprocess(image, return_tensors='pt')['pixel_values']
|
| 586 |
-
else:
|
| 587 |
-
image = processor.preprocess(image, return_tensors='pt')['pixel_values']
|
| 588 |
-
elif os.path.join(image_folder, image_file).endswith("mp4"):
|
| 589 |
-
# Video as Input
|
| 590 |
-
image = load_video(os.path.join(image_folder, image_file))
|
| 591 |
-
if self.data_args.image_aspect_ratio == 'pad':
|
| 592 |
-
image = [expand2square(img, tuple(int(x*255) for x in processor.image_mean)) for img in image]
|
| 593 |
-
image = processor.preprocess(image, return_tensors='pt')['pixel_values']
|
| 594 |
-
else:
|
| 595 |
-
image = processor.preprocess(image, return_tensors='pt')['pixel_values']
|
| 596 |
-
else:
|
| 597 |
-
try:
|
| 598 |
-
image = Image.open(os.path.join(image_folder, image_file)).convert('RGB')
|
| 599 |
-
except Exception as ex:
|
| 600 |
-
print(ex)
|
| 601 |
-
i = self.next_rand()
|
| 602 |
-
continue
|
| 603 |
-
if self.data_args.image_aspect_ratio == 'pad':
|
| 604 |
-
image = expand2square(image, tuple(int(x*255) for x in processor.image_mean))
|
| 605 |
-
image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
|
| 606 |
-
else:
|
| 607 |
-
image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
|
| 608 |
-
sources = preprocess_multimodal(
|
| 609 |
-
copy.deepcopy([e["conversations"] for e in sources]),
|
| 610 |
-
self.data_args)
|
| 611 |
-
else:
|
| 612 |
-
|
| 613 |
-
sources = copy.deepcopy([e["conversations"] for e in sources])
|
| 614 |
-
data_dict = preprocess(
|
| 615 |
-
sources,
|
| 616 |
-
self.tokenizer,
|
| 617 |
-
has_image=('image' in self.list_data_dict[i]))
|
| 618 |
-
if isinstance(i, int):
|
| 619 |
-
data_dict = dict(input_ids=data_dict["input_ids"][0],
|
| 620 |
-
labels=data_dict["labels"][0])
|
| 621 |
-
|
| 622 |
-
# image exist in the data
|
| 623 |
-
if 'image' in self.list_data_dict[i]:
|
| 624 |
-
data_dict['image'] = image
|
| 625 |
-
elif self.data_args.is_multimodal:
|
| 626 |
-
# image does not exist in the data, but the model is multimodal
|
| 627 |
-
crop_size = self.data_args.image_processor.crop_size
|
| 628 |
-
data_dict['image'] = torch.zeros(3, crop_size['height'], crop_size['width'])
|
| 629 |
-
return data_dict
|
| 630 |
-
|
| 631 |
-
|
| 632 |
-
@dataclass
|
| 633 |
-
class DataCollatorForSupervisedDataset(object):
|
| 634 |
-
"""Collate examples for supervised fine-tuning."""
|
| 635 |
-
|
| 636 |
-
tokenizer: transformers.PreTrainedTokenizer
|
| 637 |
-
|
| 638 |
-
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
|
| 639 |
-
input_ids, labels = tuple([instance[key] for instance in instances]
|
| 640 |
-
for key in ("input_ids", "labels"))
|
| 641 |
-
input_ids = torch.nn.utils.rnn.pad_sequence(
|
| 642 |
-
input_ids,
|
| 643 |
-
batch_first=True,
|
| 644 |
-
padding_value=self.tokenizer.pad_token_id)
|
| 645 |
-
labels = torch.nn.utils.rnn.pad_sequence(labels,
|
| 646 |
-
batch_first=True,
|
| 647 |
-
padding_value=IGNORE_INDEX)
|
| 648 |
-
input_ids = input_ids[:, :self.tokenizer.model_max_length]
|
| 649 |
-
labels = labels[:, :self.tokenizer.model_max_length]
|
| 650 |
-
batch = dict(
|
| 651 |
-
input_ids=input_ids,
|
| 652 |
-
labels=labels,
|
| 653 |
-
attention_mask=input_ids.ne(self.tokenizer.pad_token_id),
|
| 654 |
-
)
|
| 655 |
-
|
| 656 |
-
if 'image' in instances[0]:
|
| 657 |
-
images = [instance['image'] for instance in instances]
|
| 658 |
-
if all(x is not None and x.shape == images[0].shape for x in images):
|
| 659 |
-
batch['images'] = torch.stack(images)
|
| 660 |
-
else:
|
| 661 |
-
batch['images'] = images
|
| 662 |
-
|
| 663 |
-
return batch
|
| 664 |
-
|
| 665 |
-
|
| 666 |
-
def make_supervised_data_module(tokenizer: transformers.PreTrainedTokenizer,
|
| 667 |
-
data_args) -> Dict:
|
| 668 |
-
"""Make dataset and collator for supervised fine-tuning."""
|
| 669 |
-
train_dataset = LazySupervisedDataset(tokenizer=tokenizer,
|
| 670 |
-
data_path=data_args.data_path,
|
| 671 |
-
data_args=data_args)
|
| 672 |
-
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer)
|
| 673 |
-
return dict(train_dataset=train_dataset,
|
| 674 |
-
eval_dataset=None,
|
| 675 |
-
data_collator=data_collator)
|
| 676 |
-
|
| 677 |
-
|
| 678 |
-
def train():
|
| 679 |
-
global local_rank
|
| 680 |
-
|
| 681 |
-
parser = transformers.HfArgumentParser(
|
| 682 |
-
(ModelArguments, DataArguments, TrainingArguments))
|
| 683 |
-
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
| 684 |
-
local_rank = training_args.local_rank
|
| 685 |
-
compute_dtype = (torch.float16 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32))
|
| 686 |
-
|
| 687 |
-
bnb_model_from_pretrained_args = {}
|
| 688 |
-
if training_args.bits in [4, 8]:
|
| 689 |
-
from transformers import BitsAndBytesConfig
|
| 690 |
-
bnb_model_from_pretrained_args.update(dict(
|
| 691 |
-
device_map={"": training_args.device},
|
| 692 |
-
load_in_4bit=training_args.bits == 4,
|
| 693 |
-
load_in_8bit=training_args.bits == 8,
|
| 694 |
-
quantization_config=BitsAndBytesConfig(
|
| 695 |
-
load_in_4bit=training_args.bits == 4,
|
| 696 |
-
load_in_8bit=training_args.bits == 8,
|
| 697 |
-
llm_int8_threshold=6.0,
|
| 698 |
-
llm_int8_has_fp16_weight=False,
|
| 699 |
-
bnb_4bit_compute_dtype=compute_dtype,
|
| 700 |
-
bnb_4bit_use_double_quant=training_args.double_quant,
|
| 701 |
-
bnb_4bit_quant_type=training_args.quant_type # {'fp4', 'nf4'}
|
| 702 |
-
)
|
| 703 |
-
))
|
| 704 |
-
|
| 705 |
-
model = MPLUGOwl2LlamaForCausalLM.from_pretrained(
|
| 706 |
-
model_args.model_name_or_path,
|
| 707 |
-
cache_dir=training_args.cache_dir,
|
| 708 |
-
**bnb_model_from_pretrained_args
|
| 709 |
-
)
|
| 710 |
-
model.config.use_cache = False
|
| 711 |
-
|
| 712 |
-
if model_args.freeze_backbone:
|
| 713 |
-
model.model.requires_grad_(False)
|
| 714 |
-
|
| 715 |
-
if training_args.bits in [4, 8]:
|
| 716 |
-
from peft import prepare_model_for_kbit_training
|
| 717 |
-
model.config.torch_dtype=(torch.float32 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32))
|
| 718 |
-
model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=training_args.gradient_checkpointing)
|
| 719 |
-
|
| 720 |
-
if training_args.gradient_checkpointing:
|
| 721 |
-
if hasattr(model, "enable_input_require_grads"):
|
| 722 |
-
model.enable_input_require_grads()
|
| 723 |
-
else:
|
| 724 |
-
def make_inputs_require_grad(module, input, output):
|
| 725 |
-
output.requires_grad_(True)
|
| 726 |
-
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
|
| 727 |
-
|
| 728 |
-
if training_args.lora_enable:
|
| 729 |
-
from peft import LoraConfig, get_peft_model
|
| 730 |
-
lora_config = LoraConfig(
|
| 731 |
-
r=training_args.lora_r,
|
| 732 |
-
lora_alpha=training_args.lora_alpha,
|
| 733 |
-
target_modules=find_all_linear_names(model),
|
| 734 |
-
lora_dropout=training_args.lora_dropout,
|
| 735 |
-
bias=training_args.lora_bias,
|
| 736 |
-
task_type="CAUSAL_LM",
|
| 737 |
-
)
|
| 738 |
-
if training_args.bits == 16:
|
| 739 |
-
if training_args.bf16:
|
| 740 |
-
model.to(torch.bfloat16)
|
| 741 |
-
if training_args.fp16:
|
| 742 |
-
model.to(torch.float16)
|
| 743 |
-
rank0_print("Adding LoRA adapters...")
|
| 744 |
-
model = get_peft_model(model, lora_config)
|
| 745 |
-
|
| 746 |
-
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
| 747 |
-
model_args.model_name_or_path,
|
| 748 |
-
cache_dir=training_args.cache_dir,
|
| 749 |
-
model_max_length=training_args.model_max_length,
|
| 750 |
-
padding_side="right",
|
| 751 |
-
use_fast=False,
|
| 752 |
-
)
|
| 753 |
-
|
| 754 |
-
|
| 755 |
-
tokenizer.pad_token = tokenizer.unk_token
|
| 756 |
-
if model_args.version in conversation_lib.conv_templates:
|
| 757 |
-
conversation_lib.default_conversation = conversation_lib.conv_templates[model_args.version]
|
| 758 |
-
else:
|
| 759 |
-
conversation_lib.default_conversation = conversation_lib.conv_templates["vicuna_v1"]
|
| 760 |
-
|
| 761 |
-
if not training_args.freeze_vision_model and training_args.bits in [4, 8]:
|
| 762 |
-
model.get_model().vision_model.to(dtype=compute_dtype, device=training_args.device)
|
| 763 |
-
else:
|
| 764 |
-
vision_tower = model.get_model().vision_model
|
| 765 |
-
vision_tower.to(dtype=torch.bfloat16 if training_args.bf16 else torch.float16, device=training_args.device)
|
| 766 |
-
|
| 767 |
-
if training_args.tune_visual_abstractor and training_args.bits in [4, 8]:
|
| 768 |
-
model.get_model().visual_abstractor.to(dtype=compute_dtype, device=training_args.device)
|
| 769 |
-
else:
|
| 770 |
-
visual_abstractor = model.get_model().visual_abstractor
|
| 771 |
-
visual_abstractor.to(dtype=torch.bfloat16 if training_args.bf16 else torch.float16, device=training_args.device)
|
| 772 |
-
|
| 773 |
-
data_args.image_processor = CLIPImageProcessor.from_pretrained(model_args.model_name_or_path)
|
| 774 |
-
data_args.is_multimodal = True
|
| 775 |
-
|
| 776 |
-
model.config.image_aspect_ratio = data_args.image_aspect_ratio
|
| 777 |
-
model.config.image_grid_pinpoints = data_args.image_grid_pinpoints
|
| 778 |
-
model.config.tune_visual_abstractor = model_args.tune_visual_abstractor = training_args.tune_visual_abstractor
|
| 779 |
-
ic(training_args.tune_visual_abstractor)
|
| 780 |
-
model.requires_grad_(True)
|
| 781 |
-
if training_args.tune_visual_abstractor:
|
| 782 |
-
# model.requires_grad_(False)
|
| 783 |
-
for p in model.get_model().visual_abstractor.parameters():
|
| 784 |
-
p.requires_grad = True
|
| 785 |
-
|
| 786 |
-
model.config.freeze_vision_model = training_args.freeze_vision_model
|
| 787 |
-
ic(training_args.freeze_vision_model)
|
| 788 |
-
if training_args.freeze_vision_model:
|
| 789 |
-
for p in model.get_model().vision_model.parameters():
|
| 790 |
-
p.requires_grad = False
|
| 791 |
-
|
| 792 |
-
model.config.visual_abstractor_lr = training_args.visual_abstractor_lr
|
| 793 |
-
|
| 794 |
-
|
| 795 |
-
if training_args.bits in [4, 8]:
|
| 796 |
-
from peft.tuners.lora import LoraLayer
|
| 797 |
-
for name, module in model.named_modules():
|
| 798 |
-
if isinstance(module, LoraLayer):
|
| 799 |
-
if training_args.bf16:
|
| 800 |
-
module = module.to(torch.bfloat16)
|
| 801 |
-
if 'norm' in name:
|
| 802 |
-
module = module.to(torch.float32)
|
| 803 |
-
if 'lm_head' in name or 'embed_tokens' in name:
|
| 804 |
-
if hasattr(module, 'weight'):
|
| 805 |
-
if training_args.bf16 and module.weight.dtype == torch.float32:
|
| 806 |
-
module = module.to(torch.bfloat16)
|
| 807 |
-
|
| 808 |
-
data_module = make_supervised_data_module(tokenizer=tokenizer,
|
| 809 |
-
data_args=data_args)
|
| 810 |
-
trainer = MPLUGOwl2Trainer(model=model,
|
| 811 |
-
tokenizer=tokenizer,
|
| 812 |
-
args=training_args,
|
| 813 |
-
**data_module)
|
| 814 |
-
|
| 815 |
-
# if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")):
|
| 816 |
-
# trainer.train(resume_from_checkpoint=True)
|
| 817 |
-
# else:
|
| 818 |
-
# trainer.train()
|
| 819 |
-
|
| 820 |
-
# TODO I dont like auto resume << REMOVE IT AND UNCOMMENT THE ABOVE CODE
|
| 821 |
-
trainer.train()
|
| 822 |
-
|
| 823 |
-
trainer.save_state()
|
| 824 |
-
|
| 825 |
-
model.config.use_cache = True
|
| 826 |
-
|
| 827 |
-
if training_args.lora_enable:
|
| 828 |
-
state_dict = get_peft_state_maybe_zero_3(
|
| 829 |
-
model.named_parameters(), training_args.lora_bias
|
| 830 |
-
)
|
| 831 |
-
non_lora_state_dict = get_peft_state_non_lora_maybe_zero_3(
|
| 832 |
-
model.named_parameters()
|
| 833 |
-
)
|
| 834 |
-
if training_args.local_rank == 0 or training_args.local_rank == -1:
|
| 835 |
-
model.config.save_pretrained(training_args.output_dir)
|
| 836 |
-
model.save_pretrained(training_args.output_dir, state_dict=state_dict)
|
| 837 |
-
torch.save(non_lora_state_dict, os.path.join(training_args.output_dir, 'non_lora_trainables.bin'))
|
| 838 |
-
else:
|
| 839 |
-
safe_save_model_for_hf_trainer(trainer=trainer,
|
| 840 |
-
output_dir=training_args.output_dir)
|
| 841 |
-
|
| 842 |
-
|
| 843 |
-
if __name__ == "__main__":
|
| 844 |
-
train()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|