nlp_tools / main.py
qgyd2021's picture
add
f577279
raw
history blame
2.01 kB
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import argparse
import gradio as gr
import platform
def get_args():
parser = argparse.ArgumentParser()
args = parser.parse_args()
return args
model_names = {
"allennlp_text_classification": {
"qgyd2021/language_identification": "https://huggingface.co/qgyd2021/language_identification"
}
}
def click_button_allennlp_text_classification(text: str, model_name: str):
print(text)
print(model_name)
return "label", 0.0
def main():
args = get_args()
brief_description = """
## NLP Tools
NLP Tools Demo
"""
# ui
with gr.Blocks() as blocks:
gr.Markdown(value=brief_description)
with gr.Tabs():
with gr.TabItem("AllenNLP Text Classification"):
with gr.Row():
with gr.Column(scale=3):
text = gr.Text(label="text")
ground_true = gr.Text(label="ground_true")
model_name = gr.Dropdown(
choices=list(model_names["allennlp_text_classification"].keys())
)
button = gr.Button("infer", variant="primary")
with gr.Column(scale=3):
label = gr.Text(label="label")
prob = gr.Text(label="prob")
gr.Examples(
examples=[
["你好", "zh", "qgyd2021/language_identification"]
],
inputs=[text, ground_true, model_name],
outputs=[label, prob],
)
button.click(
click_button_allennlp_text_classification,
inputs=[text, model_name],
outputs=[label, prob]
)
blocks.queue().launch(
share=False if platform.system() == "Windows" else False
)
return
if __name__ == '__main__':
main()