Spaces:
Runtime error
Runtime error
File size: 6,193 Bytes
3177298 92dd16e 3177298 92dd16e 3177298 f8e9a6f 3177298 6a8e34d 3177298 83d59a1 3177298 6a8e34d da6951d 3177298 6a8e34d 83d59a1 3177298 ab4a005 da6951d ab4a005 5a10b4e 3177298 92dd16e 6a8e34d ab4a005 6a8e34d 9afc761 b18f746 3177298 6a8e34d 92dd16e 6a8e34d 3177298 da6951d ab4a005 92dd16e 83d59a1 92dd16e 83d59a1 92dd16e 3177298 f849820 3177298 f849820 3177298 da6951d 92dd16e da6951d 3177298 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import argparse
import os
from threading import Thread
import gradio as gr
from transformers import AutoModel, AutoTokenizer
from transformers.models.auto import AutoModelForCausalLM, AutoTokenizer
from transformers.generation.streamers import TextIteratorStreamer
import torch
from project_settings import project_path
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--train_subset", default="train.jsonl", type=str)
parser.add_argument("--valid_subset", default="valid.jsonl", type=str)
parser.add_argument(
"--pretrained_model_name_or_path",
default=(project_path / "trained_models/qwen_7b_chinese_modern_poetry").as_posix(),
type=str
)
parser.add_argument("--output_file", default="result.xlsx", type=str)
parser.add_argument("--max_new_tokens", default=512, type=int)
parser.add_argument("--top_p", default=0.9, type=float)
parser.add_argument("--temperature", default=0.35, type=float)
parser.add_argument("--repetition_penalty", default=1.0, type=float)
parser.add_argument('--device', default="cuda" if torch.cuda.is_available() else "cpu", type=str)
args = parser.parse_args()
return args
description = """
## Qwen-7B
基于 [Qwen-7B](https://huggingface.co/qgyd2021/Qwen-7B) 模型, 在 [chinese_modern_poetry](https://huggingface.co/datasets/Iess/chinese_modern_poetry) 数据集上训练了 2 个 epoch.
可用于生成现代诗. 如下:
使用下列意象写一首现代诗:智慧,刀刃.
"""
examples = [
"使用下列意象写一首现代诗:石头,森林",
"使用下列意象写一首现代诗:花,纱布",
"使用下列意象写一首现代诗:山壁,彩虹,诗句,山坡,泪",
"使用下列意象写一首现代诗:味道,黄金,名字,银子,女人",
"使用下列意象写一首现代诗:乳房,触感,车速,星星,路灯"
]
def main():
args = get_args()
tokenizer = AutoTokenizer.from_pretrained(args.pretrained_model_name_or_path, trust_remote_code=True)
# QWenTokenizer比较特殊, pad_token_id, bos_token_id, eos_token_id 均 为None. eod_id对应的token为<|endoftext|>
if tokenizer.__class__.__name__ == "QWenTokenizer":
tokenizer.pad_token_id = tokenizer.eod_id
tokenizer.bos_token_id = tokenizer.eod_id
tokenizer.eos_token_id = tokenizer.eod_id
model = AutoModelForCausalLM.from_pretrained(
args.pretrained_model_name_or_path,
trust_remote_code=True,
low_cpu_mem_usage=True,
torch_dtype=torch.bfloat16,
device_map="auto",
offload_folder="./offload",
offload_state_dict=True,
# load_in_4bit=True,
)
model = model.bfloat16().eval()
def fn_non_stream(text: str):
input_ids = tokenizer(
text,
return_tensors="pt",
add_special_tokens=False,
).input_ids.to(args.device)
bos_token_id = torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long).to(args.device)
eos_token_id = torch.tensor([[tokenizer.eos_token_id]], dtype=torch.long).to(args.device)
input_ids = torch.concat([bos_token_id, input_ids, eos_token_id], dim=1)
with torch.no_grad():
outputs = model.generate(
input_ids=input_ids,
max_new_tokens=args.max_new_tokens,
do_sample=True,
top_p=args.top_p,
temperature=args.temperature,
repetition_penalty=args.repetition_penalty,
eos_token_id=tokenizer.eos_token_id
)
outputs = outputs.tolist()[0][len(input_ids[0]):]
response = tokenizer.decode(outputs)
response = response.strip().replace(tokenizer.eos_token, "").strip()
return [(text, response)]
def fn_stream(text: str):
text = str(text).strip()
input_ids = tokenizer(
text,
return_tensors="pt",
add_special_tokens=False,
).input_ids.to(args.device)
bos_token_id = torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long).to(args.device)
eos_token_id = torch.tensor([[tokenizer.eos_token_id]], dtype=torch.long).to(args.device)
input_ids = torch.concat([bos_token_id, input_ids, eos_token_id], dim=1)
streamer = TextIteratorStreamer(tokenizer=tokenizer)
generation_kwargs = dict(
inputs=input_ids,
max_new_tokens=args.max_new_tokens,
do_sample=True,
top_p=args.top_p,
temperature=args.temperature,
repetition_penalty=args.repetition_penalty,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
streamer=streamer,
)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
output = ""
for output_ in streamer:
output_ = output_.replace(text, "")
output_ = output_.replace(tokenizer.eos_token, "")
output += output_
result = [(text, output)]
chatbot.value = result
yield result
with gr.Blocks() as blocks:
gr.Markdown(value=description)
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=400)
with gr.Row():
with gr.Column(scale=4):
text_box = gr.Textbox(show_label=False, placeholder="Enter text and press enter").style(container=False)
with gr.Column(scale=1):
submit_button = gr.Button("💬Submit")
with gr.Column(scale=1):
clear_button = gr.Button("🗑️Clear", variant="secondary")
gr.Examples(examples, text_box)
text_box.submit(fn_stream, [text_box], [chatbot])
submit_button.click(fn_stream, [text_box], [chatbot])
clear_button.click(
fn=lambda: ("", ""),
outputs=[text_box, chatbot],
queue=False,
api_name=False,
)
blocks.queue().launch()
return
if __name__ == '__main__':
main()
|