File size: 3,423 Bytes
3177298
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import transformers
from transformers import (
    PreTrainedModel,
    TrainingArguments,
    DataCollator,
    PreTrainedTokenizerBase,
    EvalPrediction,
    TrainerCallback,
)
from typing import Callable, Dict, List, Optional, Tuple, Union, Any
from torch import nn
from torch.utils.data import Dataset, DataLoader
from transformers.utils import (
    logging,
)
from typing import Optional
import os
import torch


logger = logging.get_logger(__name__)

# Name of the files used for checkpointing
TRAINING_ARGS_NAME = "training_args.bin"
TRAINER_STATE_NAME = "trainer_state.json"
OPTIMIZER_NAME = "optimizer.pt"
SCHEDULER_NAME = "scheduler.pt"
SCALER_NAME = "scaler.pt"


class Trainer(transformers.Trainer):
    """
    主要修改逻辑: 通过传入compute_loss, 支持自定义loss计算方式.
    """
    def __init__(
        self,
        model: Union[PreTrainedModel, nn.Module] = None,
        args: TrainingArguments = None,
        data_collator: Optional[DataCollator] = None,
        train_dataset: Optional[Dataset] = None,
        eval_dataset: Optional[Dataset] = None,
        tokenizer: Optional[PreTrainedTokenizerBase] = None,
        model_init: Callable[[], PreTrainedModel] = None,
        compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None,
        callbacks: Optional[List[TrainerCallback]] = None,
        optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
        preprocess_logits_for_metrics: Callable[[torch.Tensor, torch.Tensor], torch.Tensor] = None,
        compute_loss=None,
    ):
        super(Trainer, self).__init__(
            model=model,
            args=args,
            data_collator=data_collator,
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
            tokenizer=tokenizer,
            model_init=model_init,
            compute_metrics=compute_metrics,
            callbacks=callbacks,
            optimizers=optimizers,
            preprocess_logits_for_metrics=preprocess_logits_for_metrics,
        )
        self.loss_func = compute_loss

    def compute_loss(self, model, inputs, return_outputs=False):
        """
        重写loss的计算方式
        How the loss is computed by Trainer. By default, all models return the loss in the first element.

        Subclass and override for custom behavior.
        """
        return self.loss_func(model, inputs, self.args, return_outputs)


class LoRATrainer(Trainer):
    """
    修改checkpoint的保存逻辑, 只保存lora.
    """
    def _save(self, output_dir: Optional[str] = None, state_dict=None):
        # If we are executing this function, we are the process zero, so we don't check for that.
        output_dir = output_dir if output_dir is not None else self.args.output_dir
        os.makedirs(output_dir, exist_ok=True)
        logger.info(f"Saving model checkpoint to {output_dir}")
        # 保存lora权重和配置
        self.model.save_pretrained(
            output_dir, state_dict=state_dict, safe_serialization=self.args.save_safetensors
        )

        if self.tokenizer is not None:
            self.tokenizer.save_pretrained(output_dir)

        # Good practice: save your training arguments together with the trained model
        torch.save(self.args, os.path.join(output_dir, TRAINING_ARGS_NAME))


if __name__ == '__main__':
    pass