File size: 10,348 Bytes
eb33210 c3d52e7 ebdc5a0 3176152 cc310eb 3176152 d38ed8c 3176152 ebdc5a0 3176152 1307e8d 3176152 ebdc5a0 1307e8d ebdc5a0 e938cdf fdc4461 ebdc5a0 3176152 1307e8d 3176152 e938cdf fdc4461 ebdc5a0 3176152 ebdc5a0 3176152 c3d52e7 eb33210 3176152 9dfb4f3 eb33210 a206e6c eb33210 a206e6c 9dfb4f3 eb33210 9dfb4f3 ebdc5a0 1307e8d ebdc5a0 eb33210 fdc4461 eb33210 23e7ae5 eb33210 3176152 eb33210 3176152 eb33210 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions']
import gradio as gr
import pandas as pd
COLUMN_NAMES = ["Model", "Tuned on ToolBench", "Avg.", "Open Weather", "The Cat API", "Home Search", "Trip Booking", "Google Sheets", "VirtualHome", "WebShop Long", "WebShop Short", "Tabletop"]
UNTUNED_MODEL_RESULTS = '''[gpt4](https://platform.openai.com/docs/models/gpt-4) & 93.0 & 96.0 & 97.0 & 96.7 & 62.9 & 23.0 / 23.5 & 0.0 & 0.0 & 81.0 \\
[text-davinci-003](https://platform.openai.com/docs/models/gpt-3) & 99.0 & 98.0 & 97.0 & 89.2 & 62.9 & 31.0 / 25.1 & 0.0 & 0.0 & 66.7 \\
[gpt-3.5-turbo](https://platform.openai.com/docs/models/gpt-3-5) & 90.0 & 92.0 & 80.0 & 85.8 & 51.4 & 20.0 / 18.9 & 0.0 & 1.8 & 33.3 \\
[text-curie-001](https://platform.openai.com/docs/models/gpt-3) & 8.0 & 58.0 & 6.0 & 6.7 & 1.4 & 12.0 / 4.1 & 0.0 & 0.0 & 1.0 \\
[Llama-2-70b](https://huggingface.co/meta-llama/Llama-2-70b) & 90.0 & 84.39 & 83.0 & 71.67 & 58.57 & 35.0 / 24.74 & 1.53 & 30.45 & 45.4 \\
[Llama-2-13b](https://huggingface.co/meta-llama/Llama-2-13b) & 85.0 & 77.0 & 68.0 & 53.33 & 30.0 & 33.0 / 21.67 & 0.6 & 31.67 & 23.81 \\
[Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b) & 76.0 & 83.0 & 58.0 & 33.33 & 22.86 & 25.0 / 21.49 & 0.0 & 6.92 & 14.39
[llama-65b](https://huggingface.co/huggyllama/llama-65b) & 90.0 & 80.0 & 84.0 & 65.8 & 32.9 & 32.0 / 20.3 & 0.0 & 41.2 & 30.5 \\
[llama-30b](https://huggingface.co/huggyllama/llama-30b) & 78.0 & 84.0 & 66.0 & 45.0 & 37.1 & 27.0 / 21.7 & 0.0 & 30.6 & 34.3 \\
[llama-13b](https://huggingface.co/huggyllama/llama-13b) & 70.0 & 74.0 & 45.0 & 35.8 & 5.7 & 28.0 / 18.9 & 0.0 & 27.6 & 17.1 \\
[llama-13b-alpaca](https://huggingface.co/chavinlo/gpt4-x-alpaca) & 62.0 & 43.0 & 44.0 & 40.8 & 11.4 & 1.0 / 1.6 & 0.0 & 2.7 & 9.5 \\
[CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) & 86.0 & 92.0 & 74.0 & 63.33 & 38.08 & 35.0 / 21.97 & 0.0 & 0.0 & 11.16 \\
[CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf) & 90.0 & 94.0 & 78.0 & 61.67 & 41.27 & 32.0 / 21.95 & 0.0 & 0.0 & 16.98 \\
[CodeLlama-7b-Python-hf](https://huggingface.co/codellama/CodeLlama-7b-Python-hf) & 83.0 & 88.0 & 83.0 & 68.33 & 49.13 & 31.0 / 21.33 & 0.0 & 1.58 & 22.86 \\
[CodeLlama-13b-hf](https://huggingface.co/codellama/CodeLlama-13b-hf) & 96.0 & 86.83 & 87.0 & 70.83 & 51.26 & 35.0 / 22.28 & 0.0 & 0.0 & 40.95 \\
[CodeLlama-13b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-13b-Instruct-hf) & 98.0 & 89.58 & 85.0 & 72.5 & 48.97 & 31.0 / 22.56 & 0.0 & 9.7 & 57.62 \\
[CodeLlama-13b-Python-hf](https://huggingface.co/codellama/CodeLlama-13b-Python-hf) & 93.0 & 92.35 & 86.0 & 62.5 & 50.79 & 37.0 / 21.94 & 0.0 & 2.4 & 41.53 \\
[CodeLlama-34b-hf](https://huggingface.co/codellama/CodeLlama-34b-hf) & 96.39 & 85.0 & 88.0 & 88.33 & 64.29 & 34.0 / 24.65 & 0.0 & 5.53 & 51.32 \\
[CodeLlama-34b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-34b-Instruct-hf) & 94.28 & 86.0 & 90.0 & 89.17 & 61.11 & 31.0 / 24.34 & 0.0 & 25.99 & 47.46 \\
[CodeLlama-34b-Python-hf](https://huggingface.co/codellama/CodeLlama-34b-Python-hf) & 91.11 & 88.42 & 91.0 & 85.83 & 55.87 & 28.0 / 21.24 & 0.0 & 6.47 & 33.33 \\
[starcoder](https://huggingface.co/bigcode/starcoder) & 91.0 & 84.0 & 82.0 & 51.7 & 48.0 & 23.0 / 19.4 & 2.6 & 0.0 & 21.9 \\
[starcoderbase](https://huggingface.co/bigcode/starcoderbase) & 90.0 & 86.0 & 79.0 & 63.3 & 42.9 & 24.0 / 16.3 & 5.8 & 23.1 & 17.1 \\
[codegen-16B-nl](https://huggingface.co/Salesforce/codegen-16B-nl) & 51.0 & 75.0 & 37.0 & 21.7 & 7.1 & 43.0 / 18.0 & 0.0 & 0.0 & 16.2 \\
[codegen-16B-multi](https://huggingface.co/Salesforce/codegen-16B-multi) & 56.0 & 75.0 & 47.0 & 7.5 & 21.4 & 31.0 / 14.1 & 0.0 & 0.5 & 8.6 \\
[codegen-16B-mono](https://huggingface.co/Salesforce/codegen-16B-mono) & 63.7 & 72.0 & 52.0 & 28.3 & 31.5 & 28.0 / 15.7 & 1.5 & 6.6 & 15.2 \\
[bloomz](https://huggingface.co/bigscience/bloomz) & 58.0 & 85.0 & 36.0 & 22.5 & 14.3 & 9.0 / 4.9 & 0.0 & 1.0 & 1.0 \\
[opt-iml-30b](https://huggingface.co/facebook/opt-iml-30b) & 44.0 & 48.0 & 5.0 & 3.3 & 2.9 & 13.0 / 8.3 & 0.0 & 0.0 & 1.0 \\
[opt-30b](https://huggingface.co/facebook/opt-30b) & 46.0 & 35.0 & 2.0 & 3.3 & 8.6 & 24.0 / 11.7 & 0.0 & 0.0 & 1.0 \\
[opt-iml-1.3b](https://huggingface.co/facebook/opt-iml-1.3b) & 20.0 & 28.0 & 0.0 & 0.0 & 4.3 & 13.0 / 3.1 & 0.0 & 0.0 & 1.0 \\
[opt-1.3b](https://huggingface.co/facebook/opt-1.3b) & 18.0 & 30.0 & 0.0 & 0.0 & 1.4 & 31.0 / 9.7 & 0.0 & 0.0 & 1.0 \\
[neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) & 55.0 & 69.0 & 27.0 & 10.8 & 18.6 & 28.0 / 15.3 & 0.0 & 8.8 & 6.7 \\
[GPT-NeoXT-Chat-Base-20B](https://huggingface.co/togethercomputer/GPT-NeoXT-Chat-Base-20B) & 43.0 & 73.0 & 28.0 & 10.8 & 4.3 & 26.0 / 13.1 & 0.0 & 0.7 & 7.6 \\
[pythia-12b](https://huggingface.co/EleutherAI/pythia-12b) & 53.0 & 65.0 & 12.0 & 0.8 & 11.4 & 17.0 / 12.1 & 0.0 & 0.0 & 1.9 \\
[dolly-v2-12b]() & 0.0 & 1.0 & 10.0 & 5.0 & 7.1 & 11.0 / 8.9 & 0.0 & 0.0 & 7.6 \\
[pythia-6.9b](https://huggingface.co/EleutherAI/pythia-6.9b) & 41.0 & 72.0 & 8.0 & 7.5 & 4.3 & 29.0 / 14.0 & 0.0 & 0.0 & 8.6 \\
[pythia-2.8b](https://huggingface.co/EleutherAI/pythia-2.8b) & 49.0 & 54.0 & 7.0 & 3.3 & 12.9 & 24.0 / 14.8 & 0.0 & 0.0 & 7.6 \\
[pythia-1.4b](https://huggingface.co/EleutherAI/pythia-1.4b) & 37.0 & 48.0 & 4.0 & 5.0 & 10.0 & 22.0 / 10.7 & 0.0 & 5.2 & 7.6 \\
[stablelm-base-alpha-7b](https://huggingface.co/stabilityai/stablelm-base-alpha-7b) & 22.0 & 47.0 & 0.0 & 0.0 & 4.3 & 28.0 / 10.3 & 0.0 & 0.0 & 2.9 \\
[stablelm-tuned-alpha-7b](https://huggingface.co/stabilityai/stablelm-tuned-alpha-7b) & 23.0 & 38.0 & 0.0 & 0.0 & 1.4 & 26.0 / 7.3 & 0.0 & 0.0 & 3.8 \\
[stablelm-base-alpha-3b](https://huggingface.co/stabilityai/stablelm-base-alpha-3b) & 6.0 & 28.0 & 0.0 & 0.0 & 1.4 & 29.0 / 5.3 & 0.0 & 0.0 & 1.0 \\
[stablelm-tuned-alpha-3b](https://huggingface.co/stabilityai/stablelm-tuned-alpha-3b) & 14.0 & 31.0 & 0.0 & 0.8 & 0.0 & 8.0 / 5.6 & 0.0 & 0.0 & 1.0 \\'''
TUNED_MODEL_RESULTS='''[llama-30b-toolbench](https://huggingface.co/sambanovasystems/LLaMA-30b-toolbench) & 100.0 & 94.0 & 87.0 & 85.8 & 2.9 & 16.0/ 24.3& 0.0 & 0.0 & 7.5 \\
[starcoder-toolbench](https://huggingface.co/sambanovasystems/starcoder-toolbench) & 99.0 & 97.0 & 83.0 & 80.8 & 21.2 & 31.0/ 18.4& 0.0 & 0.0 & 13.9 \\
[codegen-16B-mono-toolbench](https://huggingface.co/sambanovasystems/codegen-16B-mono-toolbench) & 97.7 & 99.0 & 82.0 & 77.5 & 19.8 & 29.0/ 17.2& 0.0 & 3.5 & 16.2 \\'''
def parse_line(line):
model_results = line.replace(" ", "").strip("\\").split("&")
for i in range(1, len(model_results)):
if i == 6:
res = model_results[6].split('/')[-1].strip()
else:
res = model_results[i]
model_results[i] = float(res)
return model_results
def get_baseline_df():
df_data = []
lines = UNTUNED_MODEL_RESULTS.split("\n")
for line in lines:
model_results = parse_line(line)
assert len(model_results) == 10
avg = sum(model_results[1:-3] + model_results[-2:]) / 8
model_results.insert(1, avg)
model_results.insert(1, "False")
df_data.append(model_results)
lines = TUNED_MODEL_RESULTS.split("\n")
for line in lines:
model_results = parse_line(line)
assert len(model_results) == 10
avg = sum(model_results[1:-3] + model_results[-2:]) / 8
model_results.insert(1, avg)
model_results.insert(1, "True")
df_data.append(model_results)
print(len(df_data))
df = pd.DataFrame(df_data, columns=COLUMN_NAMES).round(1)
return df
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = r"""@misc{xu2023tool,
title={On the Tool Manipulation Capability of Open-source Large Language Models},
author={Qiantong Xu and Fenglu Hong and Bo Li and Changran Hu and Zhengyu Chen and Jian Zhang},
year={2023},
eprint={2305.16504},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
}"""
block = gr.Blocks()
with block:
gr.Markdown(
"""# Toolbench Leaderboard
Welcome to the leaderboard of the ToolBench! 🏆
This is a community where participants create language models and action generation algorithms to generate API function calls based goals described in natural lanugage!
Please refer to [our paper](https://arxiv.org/abs/2305.16504) for more details and join our [Discord](https://discord.com/invite/JehFG5HXKb) for further discussion.
The [evaluation suite](https://github.com/sambanova/toolbench/) is now alive on Github.
"""
)
with gr.Row():
with gr.Accordion("Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
).style(show_copy_button=True)
gr.Markdown(
"""In the table below, we summarize the 3-shot performance of all the models.
We use success rate as the primary evaluation metric for most tasks, except that we report rewards on WebShop, and the Longest Common Subsequence (LCS) on VirtualHome, following the original metrics proposed by the respective authors.
"""
)
with gr.Row():
data = gr.components.Dataframe(
type="pandas", datatype=["markdown", "markdown", "number", "number", "number", "number", "number", "number", "number", "number", "number", "number"]
)
with gr.Row():
data_run = gr.Button("Refresh")
data_run.click(
get_baseline_df, outputs=data
)
block.load(get_baseline_df, outputs=data)
block.launch() |