File size: 15,602 Bytes
2f85de4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 |
# python3.7
"""Contains the visualizer to visualize images with HTML page."""
import os
import base64
import cv2
import numpy as np
from bs4 import BeautifulSoup
from ..image_utils import get_grid_shape
from ..image_utils import parse_image_size
from ..image_utils import load_image
from ..image_utils import resize_image
from ..image_utils import list_images_from_dir
__all__ = ['HtmlVisualizer', 'HtmlReader']
def get_sortable_html_header(column_name_list, sort_by_ascending=False):
"""Gets header for sortable HTML page.
Basically, the HTML page contains a sortable table, where user can sort the
rows by a particular column by clicking the column head.
Example:
column_name_list = [name_1, name_2, name_3]
header = get_sortable_html_header(column_name_list)
footer = get_sortable_html_footer()
sortable_table = ...
html_page = header + sortable_table + footer
Args:
column_name_list: List of column header names.
sort_by_ascending: Default sorting order. If set as `True`, the HTML
page will be sorted by ascending order when the header is clicked
for the first time.
Returns:
A string, which represents for the header for a sortable HTML page.
"""
header = '\n'.join([
'<script type="text/javascript">',
'var column_idx;',
'var sort_by_ascending = ' + str(sort_by_ascending).lower() + ';',
'',
'function sorting(tbody, column_idx){',
' this.column_idx = column_idx;',
' Array.from(tbody.rows)',
' .sort(compareCells)',
' .forEach(function(row) { tbody.appendChild(row); })',
' sort_by_ascending = !sort_by_ascending;',
'}',
'',
'function compareCells(row_a, row_b) {',
' var val_a = row_a.cells[column_idx].innerText;',
' var val_b = row_b.cells[column_idx].innerText;',
' var flag = sort_by_ascending ? 1 : -1;',
' return flag * (val_a > val_b ? 1 : -1);',
'}',
'</script>',
'',
'<html>',
'',
'<head>',
'<style>',
' table {',
' border-spacing: 0;',
' border: 1px solid black;',
' }',
' th {',
' cursor: pointer;',
' }',
' th, td {',
' text-align: left;',
' vertical-align: middle;',
' border-collapse: collapse;',
' border: 0.5px solid black;',
' padding: 8px;',
' }',
' tr:nth-child(even) {',
' background-color: #d2d2d2;',
' }',
'</style>',
'</head>',
'',
'<body>',
'',
'<table>',
'<thead>',
'<tr>',
''])
for idx, name in enumerate(column_name_list):
header += f' <th onclick="sorting(tbody, {idx})">{name}</th>\n'
header += '</tr>\n'
header += '</thead>\n'
header += '<tbody id="tbody">\n'
return header
def get_sortable_html_footer():
"""Gets footer for sortable HTML page.
Check function `get_sortable_html_header()` for more details.
"""
return '</tbody>\n</table>\n\n</body>\n</html>\n'
def encode_image_to_html_str(image, image_size=None):
"""Encodes an image to HTML language.
NOTE: Input image is always assumed to be with `RGB` channel order.
Args:
image: The input image to encode. Should be with `RGB` channel order.
image_size: This field is used to resize the image before encoding.
`None` disables resizing. (default: None)
Returns:
A string that represents the encoded image.
"""
if image is None:
return ''
assert image.ndim == 3 and image.shape[2] in [1, 3, 4]
if image.shape[2] == 3:
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
elif image.shape[2] == 4:
image = cv2.cvtColor(image, cv2.COLOR_RGBA2BGRA)
# Resize the image if needed.
height, width = parse_image_size(image_size)
height = height or image.shape[0]
width = width or image.shape[1]
if image.shape[0:2] != (height, width):
image = resize_image(image, (width, height))
# Encode the image to HTML-format string.
if image.shape[2] == 4: # Use `png` to encoder RGBA image.
encoded = cv2.imencode('.png', image)[1].tostring()
encoded_base64 = base64.b64encode(encoded).decode('utf-8')
html_str = f'<img src="data:image/png;base64, {encoded_base64}"/>'
else:
encoded = cv2.imencode('.jpg', image)[1].tostring()
encoded_base64 = base64.b64encode(encoded).decode('utf-8')
html_str = f'<img src="data:image/jpeg;base64, {encoded_base64}"/>'
return html_str
def decode_html_str_to_image(html_str, image_size=None):
"""Decodes an image from HTML string.
Args:
html_str: An HTML string that represents an image.
image_size: This field is used to resize the image after decoding.
`None` disables resizing. (default: None)
Returns:
An image with `RGB` channel order.
"""
if not html_str:
return None
assert isinstance(html_str, str)
image_str = html_str.split(',')[-1].strip()
encoded_image = base64.b64decode(image_str)
encoded_image_numpy = np.frombuffer(encoded_image, dtype=np.uint8)
image = cv2.imdecode(encoded_image_numpy, flags=cv2.IMREAD_UNCHANGED)
if image.ndim == 2:
image = image[:, :, np.newaxis]
assert image.ndim == 3 and image.shape[2] in [1, 3, 4]
if image.shape[2] == 3:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
if image.shape[2] == 4:
image = cv2.cvtColor(image, cv2.COLOR_BGRA2RGBA)
# Resize the image if needed.
height, width = parse_image_size(image_size)
height = height or image.shape[0]
width = width or image.shape[1]
if image.shape[0:2] != (height, width):
image = resize_image(image, (width, height))
return image
class HtmlVisualizer(object):
"""Defines the HTML visualizer that visualizes images on an HTML page.
This class can be used to visualize image results on an HTML page.
Basically, it is based on an HTML-format sorted table with helper functions
`get_sortable_html_header()`, `get_sortable_html_footer()`, and
`encode_image_to_html_str()`. To simplify the usage, specifying the
following fields are enough to create a visualization page:
(1) num_rows: Number of rows of the table (header-row exclusive).
(2) num_cols: Number of columns of the table.
(3) header_contents (optional): Title of each column.
NOTE: `grid_size` can be used to assign `num_rows` and `num_cols`
automatically.
Example:
html = HtmlVisualizer(num_rows, num_cols)
html.set_headers([...])
for i in range(num_rows):
for j in range(num_cols):
html.set_cell(i, j, text=..., image=..., highlight=False)
html.save('visualize.html')
"""
def __init__(self,
grid_size=0,
num_rows=0,
num_cols=0,
is_portrait=True,
image_size=None):
"""Initializes the html visualizer.
Args:
grid_size: Total number of cells, i.e., height * width. (default: 0)
num_rows: Number of rows. (default: 0)
num_cols: Number of columns. (default: 0)
is_portrait: Whether the HTML page should be portrait or landscape.
This is only used when it requires to compute `num_rows` and
`num_cols` automatically. See function `get_grid_shape()` in
file `./image_utils.py` for details. (default: True)
image_size: Size to visualize each image. (default: None)
"""
self.reset(grid_size, num_rows, num_cols, is_portrait)
self.set_image_size(image_size)
def reset(self,
grid_size=0,
num_rows=0,
num_cols=0,
is_portrait=True):
"""Resets the HTML page with new number of rows and columns."""
if grid_size > 0:
num_rows, num_cols = get_grid_shape(grid_size,
height=num_rows,
width=num_cols,
is_portrait=is_portrait)
self.grid_size = num_rows * num_cols
self.num_rows = num_rows
self.num_cols = num_cols
self.headers = ['' for _ in range(self.num_cols)]
self.cells = [[{
'text': '',
'image': '',
'highlight': False,
} for _ in range(self.num_cols)] for _ in range(self.num_rows)]
def set_image_size(self, image_size=None):
"""Sets the image size of each cell in the HTML page."""
self.image_size = image_size
def set_header(self, col_idx, content):
"""Sets the content of a particular header by column index."""
self.headers[col_idx] = content
def set_headers(self, contents):
"""Sets the contents of all headers."""
assert isinstance(contents, (list, tuple))
assert len(contents) == self.num_cols
for col_idx, content in enumerate(contents):
self.set_header(col_idx, content)
def set_cell(self, row_idx, col_idx, text='', image=None, highlight=False):
"""Sets the content of a particular cell.
Basically, a cell contains some text as well as an image. Both text and
image can be empty.
NOTE: The image is assumed to be with `RGB` channel order.
Args:
row_idx: Row index of the cell to edit.
col_idx: Column index of the cell to edit.
text: Text to add into the target cell. (default: None)
image: Image to show in the target cell. Should be with `RGB`
channel order. (default: None)
highlight: Whether to highlight this cell. (default: False)
"""
self.cells[row_idx][col_idx]['text'] = text
self.cells[row_idx][col_idx]['image'] = encode_image_to_html_str(
image, self.image_size)
self.cells[row_idx][col_idx]['highlight'] = bool(highlight)
def visualize_collection(self,
images,
save_path=None,
num_rows=0,
num_cols=0,
is_portrait=True,
is_row_major=True):
"""Visualizes a collection of images one by one."""
self.reset(grid_size=len(images),
num_rows=num_rows,
num_cols=num_cols,
is_portrait=is_portrait)
for idx, image in enumerate(images):
if is_row_major:
row_idx, col_idx = divmod(idx, self.num_cols)
else:
col_idx, row_idx = divmod(idx, self.num_rows)
self.set_cell(row_idx, col_idx, text=f'Index {idx:03d}',
image=image)
if save_path:
self.save(save_path)
def visualize_list(self,
image_list,
save_path=None,
num_rows=0,
num_cols=0,
is_portrait=True,
is_row_major=True):
"""Visualizes a list of image files."""
self.reset(grid_size=len(image_list),
num_rows=num_rows,
num_cols=num_cols,
is_portrait=is_portrait)
for idx, filename in enumerate(image_list):
basename = os.path.basename(filename)
image = load_image(filename)
if is_row_major:
row_idx, col_idx = divmod(idx, self.num_cols)
else:
col_idx, row_idx = divmod(idx, self.num_rows)
self.set_cell(row_idx, col_idx,
text=f'{basename} (index {idx:03d})', image=image)
if save_path:
self.save(save_path)
def visualize_directory(self,
directory,
save_path=None,
num_rows=0,
num_cols=0,
is_portrait=True,
is_row_major=True):
"""Visualizes all images under a directory."""
image_list = list_images_from_dir(directory)
self.visualize_list(image_list=image_list,
save_path=save_path,
num_rows=num_rows,
num_cols=num_cols,
is_portrait=is_portrait,
is_row_major=is_row_major)
def save(self, path):
"""Saves the HTML page."""
html = ''
for i in range(self.num_rows):
html += '<tr>\n'
for j in range(self.num_cols):
text = self.cells[i][j]['text']
image = self.cells[i][j]['image']
if self.cells[i][j]['highlight']:
color = ' bgcolor="#FF8888"'
else:
color = ''
if text:
html += f' <td{color}>{text}<br><br>{image}</td>\n'
else:
html += f' <td{color}>{image}</td>\n'
html += '</tr>\n'
header = get_sortable_html_header(self.headers)
footer = get_sortable_html_footer()
with open(path, 'w') as f:
f.write(header + html + footer)
class HtmlReader(object):
"""Defines the HTML page reader.
This class can be used to parse results from the visualization page
generated by `HtmlVisualizer`.
Example:
html = HtmlReader(html_path)
for j in range(html.num_cols):
header = html.get_header(j)
for i in range(html.num_rows):
for j in range(html.num_cols):
text = html.get_text(i, j)
image = html.get_image(i, j, image_size=None)
"""
def __init__(self, path):
"""Initializes by loading the content from file."""
self.path = path
# Load content.
with open(path, 'r') as f:
self.html = BeautifulSoup(f, 'html.parser')
# Parse headers.
thead = self.html.find('thead')
headers = thead.findAll('th')
self.headers = []
for header in headers:
self.headers.append(header.text)
self.num_cols = len(self.headers)
# Parse cells.
tbody = self.html.find('tbody')
rows = tbody.findAll('tr')
self.cells = []
for row in rows:
cells = row.findAll('td')
self.cells.append([])
for cell in cells:
self.cells[-1].append({
'text': cell.text,
'image': cell.find('img')['src'],
})
assert len(self.cells[-1]) == self.num_cols
self.num_rows = len(self.cells)
def get_header(self, j):
"""Gets header for a particular column."""
return self.headers[j]
def get_text(self, i, j):
"""Gets text from a particular cell."""
return self.cells[i][j]['text']
def get_image(self, i, j, image_size=None):
"""Gets image from a particular cell."""
return decode_html_str_to_image(self.cells[i][j]['image'], image_size)
|